Jiao Chen, Mengqian Zhang, Zijun Xu, Ruoxin Ma, Qingdong Shi
{"title":"机器学习分析预测生物炭中碳量子点的荧光量子产率。","authors":"Jiao Chen, Mengqian Zhang, Zijun Xu, Ruoxin Ma, Qingdong Shi","doi":"10.1016/j.scitotenv.2023.165136","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar nanoparticles have recently attracted attention, owing to their environmental behavior and ecological effects. However, biochar has not been shown to contain carbon quantum dots (< 10 nm) with unique photovoltaic properties. Therefore, this study utilized several characterization techniques to demonstrate the generation of carbon quantum dots in biochar produced from 10 types of farm waste. The generated carbon quantum dots had a quasi-spherical morphology and high-resolution lattice stripes with lattice spacings of 0.20-0.23 nm. Moreover, they contained functional groups with good hydrophilic properties, such as amino and hydroxyl groups, and elemental O, C, and N on the surface. A crucial determinant of the photoluminescence properties of carbon quantum dots is their fluorescence quantum yield. Therefore, the relationship between the biochar preparation parameters and the fluorescence quantum yield was investigated using six machine learning analytical models based on 480 samples. Among the models, the gradient-boosting decision-tree regression model exhibited the best predictive performance (R<sup>2</sup> > 0.9, RMSE <0.02, and MAPE <3), and was used for the analysis of feature importance; compared to the properties of the raw material, the production parameters had a greater effect on the fluorescence quantum yield. Additionally, four key features were identified: pyrolysis temperature, residence time, N content, and C/N ratio, which were independent of farm waste type. These features can be used to accurately predict the fluorescence quantum yield of carbon quantum dots in biochar. The relative error range between the predicted and the experimental value of fluorescence quantum yield is 0.00-4.60 %. Thus, the prediction model has the potential to predict the fluorescence quantum yield of carbon quantum dots in other types of farm waste biochar, and provides fundamental information for the study of biochar nanoparticles.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"896 ","pages":"165136"},"PeriodicalIF":8.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine-learning analysis to predict the fluorescence quantum yield of carbon quantum dots in biochar.\",\"authors\":\"Jiao Chen, Mengqian Zhang, Zijun Xu, Ruoxin Ma, Qingdong Shi\",\"doi\":\"10.1016/j.scitotenv.2023.165136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biochar nanoparticles have recently attracted attention, owing to their environmental behavior and ecological effects. However, biochar has not been shown to contain carbon quantum dots (< 10 nm) with unique photovoltaic properties. Therefore, this study utilized several characterization techniques to demonstrate the generation of carbon quantum dots in biochar produced from 10 types of farm waste. The generated carbon quantum dots had a quasi-spherical morphology and high-resolution lattice stripes with lattice spacings of 0.20-0.23 nm. Moreover, they contained functional groups with good hydrophilic properties, such as amino and hydroxyl groups, and elemental O, C, and N on the surface. A crucial determinant of the photoluminescence properties of carbon quantum dots is their fluorescence quantum yield. Therefore, the relationship between the biochar preparation parameters and the fluorescence quantum yield was investigated using six machine learning analytical models based on 480 samples. Among the models, the gradient-boosting decision-tree regression model exhibited the best predictive performance (R<sup>2</sup> > 0.9, RMSE <0.02, and MAPE <3), and was used for the analysis of feature importance; compared to the properties of the raw material, the production parameters had a greater effect on the fluorescence quantum yield. Additionally, four key features were identified: pyrolysis temperature, residence time, N content, and C/N ratio, which were independent of farm waste type. These features can be used to accurately predict the fluorescence quantum yield of carbon quantum dots in biochar. The relative error range between the predicted and the experimental value of fluorescence quantum yield is 0.00-4.60 %. Thus, the prediction model has the potential to predict the fluorescence quantum yield of carbon quantum dots in other types of farm waste biochar, and provides fundamental information for the study of biochar nanoparticles.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"896 \",\"pages\":\"165136\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2023.165136\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2023.165136","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Machine-learning analysis to predict the fluorescence quantum yield of carbon quantum dots in biochar.
Biochar nanoparticles have recently attracted attention, owing to their environmental behavior and ecological effects. However, biochar has not been shown to contain carbon quantum dots (< 10 nm) with unique photovoltaic properties. Therefore, this study utilized several characterization techniques to demonstrate the generation of carbon quantum dots in biochar produced from 10 types of farm waste. The generated carbon quantum dots had a quasi-spherical morphology and high-resolution lattice stripes with lattice spacings of 0.20-0.23 nm. Moreover, they contained functional groups with good hydrophilic properties, such as amino and hydroxyl groups, and elemental O, C, and N on the surface. A crucial determinant of the photoluminescence properties of carbon quantum dots is their fluorescence quantum yield. Therefore, the relationship between the biochar preparation parameters and the fluorescence quantum yield was investigated using six machine learning analytical models based on 480 samples. Among the models, the gradient-boosting decision-tree regression model exhibited the best predictive performance (R2 > 0.9, RMSE <0.02, and MAPE <3), and was used for the analysis of feature importance; compared to the properties of the raw material, the production parameters had a greater effect on the fluorescence quantum yield. Additionally, four key features were identified: pyrolysis temperature, residence time, N content, and C/N ratio, which were independent of farm waste type. These features can be used to accurately predict the fluorescence quantum yield of carbon quantum dots in biochar. The relative error range between the predicted and the experimental value of fluorescence quantum yield is 0.00-4.60 %. Thus, the prediction model has the potential to predict the fluorescence quantum yield of carbon quantum dots in other types of farm waste biochar, and provides fundamental information for the study of biochar nanoparticles.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.