{"title":"利用Split-GFP和TurboID (CsFiND)的融合进行互补分析,可以同时可视化和接近标记酵母细胞器接触位点。","authors":"Shintaro Fujimoto, Shinya Tashiro, Yasushi Tamura","doi":"10.1177/25152564231153621","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have revealed that organelle membrane contact sites (MCSs) play important roles in diverse cellular events, including the transport of lipids and ions between connected organelles. To understand MCS functions, it is essential to uncover proteins that accumulate at MCSs. Here, we develop a complementation assay system termed CsFiND (Complementation assay using Fusion of split-GFP and TurboID) for the simultaneous visualization of MCSs and identification of MCS-localized proteins. We express the CsFiND proteins on the endoplasmic reticulum and mitochondrial outer membrane in yeast to verify the reliability of CsFiND as a tool for identifying MCS-localized proteins.</p>","PeriodicalId":10556,"journal":{"name":"Contact (Thousand Oaks (Ventura County, Calif.))","volume":"6 ","pages":"25152564231153621"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/af/cc/10.1177_25152564231153621.PMC10243572.pdf","citationCount":"0","resultStr":"{\"title\":\"Complementation Assay Using Fusion of Split-GFP and TurboID (CsFiND) Enables Simultaneous Visualization and Proximity Labeling of Organelle Contact Sites in Yeast.\",\"authors\":\"Shintaro Fujimoto, Shinya Tashiro, Yasushi Tamura\",\"doi\":\"10.1177/25152564231153621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous studies have revealed that organelle membrane contact sites (MCSs) play important roles in diverse cellular events, including the transport of lipids and ions between connected organelles. To understand MCS functions, it is essential to uncover proteins that accumulate at MCSs. Here, we develop a complementation assay system termed CsFiND (Complementation assay using Fusion of split-GFP and TurboID) for the simultaneous visualization of MCSs and identification of MCS-localized proteins. We express the CsFiND proteins on the endoplasmic reticulum and mitochondrial outer membrane in yeast to verify the reliability of CsFiND as a tool for identifying MCS-localized proteins.</p>\",\"PeriodicalId\":10556,\"journal\":{\"name\":\"Contact (Thousand Oaks (Ventura County, Calif.))\",\"volume\":\"6 \",\"pages\":\"25152564231153621\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/af/cc/10.1177_25152564231153621.PMC10243572.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contact (Thousand Oaks (Ventura County, Calif.))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25152564231153621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact (Thousand Oaks (Ventura County, Calif.))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25152564231153621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complementation Assay Using Fusion of Split-GFP and TurboID (CsFiND) Enables Simultaneous Visualization and Proximity Labeling of Organelle Contact Sites in Yeast.
Numerous studies have revealed that organelle membrane contact sites (MCSs) play important roles in diverse cellular events, including the transport of lipids and ions between connected organelles. To understand MCS functions, it is essential to uncover proteins that accumulate at MCSs. Here, we develop a complementation assay system termed CsFiND (Complementation assay using Fusion of split-GFP and TurboID) for the simultaneous visualization of MCSs and identification of MCS-localized proteins. We express the CsFiND proteins on the endoplasmic reticulum and mitochondrial outer membrane in yeast to verify the reliability of CsFiND as a tool for identifying MCS-localized proteins.