{"title":"使用醋酸锌作为荧光衍生试剂,通过柱后光照射高效液相色谱法测定烟酸。","authors":"Ken-Ichi Mawatari, Yuika Tanikawa, Makoto Yasuda, Tomoko Fukuuchi, Noriko Yamaoka, Kiyoko Kaneko, Kazuya Nakagomi, Naoto Oku","doi":"10.1177/11786469221146596","DOIUrl":null,"url":null,"abstract":"<p><p>For the fluorometric determination of picolinic acid in human serum, HPLC-postcolumn UV irradiation using zinc acetate has been developed. Picolinic acid in serum sample was separated on a Capcell Pak C18. The mobile phase consisted of 0.1 mol/L sodium phosphate solution (adjusted to pH 3.0) containing 3.0 mmol/L zinc acetate and 3.5 mmol/L trimethylamine, and delivered at a flow rate of 0.8 mL/minutes. In order to stabilize the retention time (6.5 minutes), a back pressure tube (0.4 m × 0.13 mm i.d.) was attached after the photoreaction tube. Column effluent was irradiated with ultraviolet light to produce fluorescence, excitation wavelength of 336 nm and emission wavelength of 448 nm. The calibration graph for picolinic acid showed linearity when the amount was in the range of 0.89 to 455 pmol, and the detection limit (S/N = 3) was determined to be 0.30 pmol. The pretreatment of serum sample consisted of deproteinized by perchloric acid, potassium hydroxide, and mobile phase. The mean recovery of picolinic acid from serum was 99.0%. Using this procedure, the concentration of picolinic acid in serum of a healthy subject was determined.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"16 ","pages":"11786469221146596"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/5c/10.1177_11786469221146596.PMC10159237.pdf","citationCount":"0","resultStr":"{\"title\":\"Determination of Picolinic Acid by HPLC Coupled With Postcolumn Photo Irradiation Using Zinc Acetate as a Fluorescent Derivatization Reagent.\",\"authors\":\"Ken-Ichi Mawatari, Yuika Tanikawa, Makoto Yasuda, Tomoko Fukuuchi, Noriko Yamaoka, Kiyoko Kaneko, Kazuya Nakagomi, Naoto Oku\",\"doi\":\"10.1177/11786469221146596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For the fluorometric determination of picolinic acid in human serum, HPLC-postcolumn UV irradiation using zinc acetate has been developed. Picolinic acid in serum sample was separated on a Capcell Pak C18. The mobile phase consisted of 0.1 mol/L sodium phosphate solution (adjusted to pH 3.0) containing 3.0 mmol/L zinc acetate and 3.5 mmol/L trimethylamine, and delivered at a flow rate of 0.8 mL/minutes. In order to stabilize the retention time (6.5 minutes), a back pressure tube (0.4 m × 0.13 mm i.d.) was attached after the photoreaction tube. Column effluent was irradiated with ultraviolet light to produce fluorescence, excitation wavelength of 336 nm and emission wavelength of 448 nm. The calibration graph for picolinic acid showed linearity when the amount was in the range of 0.89 to 455 pmol, and the detection limit (S/N = 3) was determined to be 0.30 pmol. The pretreatment of serum sample consisted of deproteinized by perchloric acid, potassium hydroxide, and mobile phase. The mean recovery of picolinic acid from serum was 99.0%. Using this procedure, the concentration of picolinic acid in serum of a healthy subject was determined.</p>\",\"PeriodicalId\":46603,\"journal\":{\"name\":\"International Journal of Tryptophan Research\",\"volume\":\"16 \",\"pages\":\"11786469221146596\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/5c/10.1177_11786469221146596.PMC10159237.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Tryptophan Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786469221146596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Tryptophan Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786469221146596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Determination of Picolinic Acid by HPLC Coupled With Postcolumn Photo Irradiation Using Zinc Acetate as a Fluorescent Derivatization Reagent.
For the fluorometric determination of picolinic acid in human serum, HPLC-postcolumn UV irradiation using zinc acetate has been developed. Picolinic acid in serum sample was separated on a Capcell Pak C18. The mobile phase consisted of 0.1 mol/L sodium phosphate solution (adjusted to pH 3.0) containing 3.0 mmol/L zinc acetate and 3.5 mmol/L trimethylamine, and delivered at a flow rate of 0.8 mL/minutes. In order to stabilize the retention time (6.5 minutes), a back pressure tube (0.4 m × 0.13 mm i.d.) was attached after the photoreaction tube. Column effluent was irradiated with ultraviolet light to produce fluorescence, excitation wavelength of 336 nm and emission wavelength of 448 nm. The calibration graph for picolinic acid showed linearity when the amount was in the range of 0.89 to 455 pmol, and the detection limit (S/N = 3) was determined to be 0.30 pmol. The pretreatment of serum sample consisted of deproteinized by perchloric acid, potassium hydroxide, and mobile phase. The mean recovery of picolinic acid from serum was 99.0%. Using this procedure, the concentration of picolinic acid in serum of a healthy subject was determined.