Jingxuan Zhao , Hongxu Liu , Peng Xue , Yuchao Qi , Ziwei Lv , Ruijia Wang , Yucheng Wang , Shulin Sun
{"title":"刷接CS聚合物的多层防护结构DA@CNTsPVDF膜上的涂层可有效去除染料废水。","authors":"Jingxuan Zhao , Hongxu Liu , Peng Xue , Yuchao Qi , Ziwei Lv , Ruijia Wang , Yucheng Wang , Shulin Sun","doi":"10.1016/j.jhazmat.2023.132435","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the process of removing dye wastewater, the membrane surface is susceptible to contamination, resulting in reduced performance and limited dye separation efficiency. A single hydrophilic modification layer is not enough to achieve effective separation of different types of dyes. The present research designed a \"double layer protection\" method in order to overcome the above deficiencies. A solution of dopamine (DA) coated carbon nanotubes (CNTs-COOH) was covered on the surface of the </span>polyvinylidene fluoride (PVDF) membrane by deposition, followed by grafting a layer of chitosan (CS) polymer brushes on its surface. The spatial double layer structure provides an excellent barrier effect and effectively reduces the contamination of dyes. When filtering different types of dyes, effective filtration of anionic and cationic dyes through the electrostatic effect of the first layer, the adsorption of CNTs in the second layer and the hydration layer of both layers. All membranes have excellent rejection properties. More importantly, the membranes also had good chemical and mechanical stability and their serviceability was not degraded. Therefore, the prepared PVDF-based multi-layer composite membranes behave a potential application prospect in the wastewater purification field.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"460 ","pages":"Article 132435"},"PeriodicalIF":12.2000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Construction of a multi-layer protection of CS polymer brush grafted DA@CNTs coating on PVDF membrane for effective removal of dye effluent\",\"authors\":\"Jingxuan Zhao , Hongxu Liu , Peng Xue , Yuchao Qi , Ziwei Lv , Ruijia Wang , Yucheng Wang , Shulin Sun\",\"doi\":\"10.1016/j.jhazmat.2023.132435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In the process of removing dye wastewater, the membrane surface is susceptible to contamination, resulting in reduced performance and limited dye separation efficiency. A single hydrophilic modification layer is not enough to achieve effective separation of different types of dyes. The present research designed a \\\"double layer protection\\\" method in order to overcome the above deficiencies. A solution of dopamine (DA) coated carbon nanotubes (CNTs-COOH) was covered on the surface of the </span>polyvinylidene fluoride (PVDF) membrane by deposition, followed by grafting a layer of chitosan (CS) polymer brushes on its surface. The spatial double layer structure provides an excellent barrier effect and effectively reduces the contamination of dyes. When filtering different types of dyes, effective filtration of anionic and cationic dyes through the electrostatic effect of the first layer, the adsorption of CNTs in the second layer and the hydration layer of both layers. All membranes have excellent rejection properties. More importantly, the membranes also had good chemical and mechanical stability and their serviceability was not degraded. Therefore, the prepared PVDF-based multi-layer composite membranes behave a potential application prospect in the wastewater purification field.</p></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"460 \",\"pages\":\"Article 132435\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389423017181\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389423017181","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Construction of a multi-layer protection of CS polymer brush grafted DA@CNTs coating on PVDF membrane for effective removal of dye effluent
In the process of removing dye wastewater, the membrane surface is susceptible to contamination, resulting in reduced performance and limited dye separation efficiency. A single hydrophilic modification layer is not enough to achieve effective separation of different types of dyes. The present research designed a "double layer protection" method in order to overcome the above deficiencies. A solution of dopamine (DA) coated carbon nanotubes (CNTs-COOH) was covered on the surface of the polyvinylidene fluoride (PVDF) membrane by deposition, followed by grafting a layer of chitosan (CS) polymer brushes on its surface. The spatial double layer structure provides an excellent barrier effect and effectively reduces the contamination of dyes. When filtering different types of dyes, effective filtration of anionic and cationic dyes through the electrostatic effect of the first layer, the adsorption of CNTs in the second layer and the hydration layer of both layers. All membranes have excellent rejection properties. More importantly, the membranes also had good chemical and mechanical stability and their serviceability was not degraded. Therefore, the prepared PVDF-based multi-layer composite membranes behave a potential application prospect in the wastewater purification field.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.