{"title":"高维生存分析:方法与应用。","authors":"Stephen Salerno, Yi Li","doi":"10.1146/annurev-statistics-032921-022127","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of precision medicine, time-to-event outcomes such as time to death or progression are routinely collected, along with high-throughput covariates. These high-dimensional data defy classical survival regression models, which are either infeasible to fit or likely to incur low predictability due to over-fitting. To overcome this, recent emphasis has been placed on developing novel approaches for feature selection and survival prognostication. We will review various cutting-edge methods that handle survival outcome data with high-dimensional predictors, highlighting recent innovations in machine learning approaches for survival prediction. We will cover the statistical intuitions and principles behind these methods and conclude with extensions to more complex settings, where competing events are observed. We exemplify these methods with applications to the Boston Lung Cancer Survival Cohort study, one of the largest cancer epidemiology cohorts investigating the complex mechanisms of lung cancer.</p>","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"10 1","pages":"25-49"},"PeriodicalIF":7.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038209/pdf/nihms-1836646.pdf","citationCount":"7","resultStr":"{\"title\":\"High-Dimensional Survival Analysis: Methods and Applications.\",\"authors\":\"Stephen Salerno, Yi Li\",\"doi\":\"10.1146/annurev-statistics-032921-022127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the era of precision medicine, time-to-event outcomes such as time to death or progression are routinely collected, along with high-throughput covariates. These high-dimensional data defy classical survival regression models, which are either infeasible to fit or likely to incur low predictability due to over-fitting. To overcome this, recent emphasis has been placed on developing novel approaches for feature selection and survival prognostication. We will review various cutting-edge methods that handle survival outcome data with high-dimensional predictors, highlighting recent innovations in machine learning approaches for survival prediction. We will cover the statistical intuitions and principles behind these methods and conclude with extensions to more complex settings, where competing events are observed. We exemplify these methods with applications to the Boston Lung Cancer Survival Cohort study, one of the largest cancer epidemiology cohorts investigating the complex mechanisms of lung cancer.</p>\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"10 1\",\"pages\":\"25-49\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038209/pdf/nihms-1836646.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-032921-022127\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-032921-022127","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
High-Dimensional Survival Analysis: Methods and Applications.
In the era of precision medicine, time-to-event outcomes such as time to death or progression are routinely collected, along with high-throughput covariates. These high-dimensional data defy classical survival regression models, which are either infeasible to fit or likely to incur low predictability due to over-fitting. To overcome this, recent emphasis has been placed on developing novel approaches for feature selection and survival prognostication. We will review various cutting-edge methods that handle survival outcome data with high-dimensional predictors, highlighting recent innovations in machine learning approaches for survival prediction. We will cover the statistical intuitions and principles behind these methods and conclude with extensions to more complex settings, where competing events are observed. We exemplify these methods with applications to the Boston Lung Cancer Survival Cohort study, one of the largest cancer epidemiology cohorts investigating the complex mechanisms of lung cancer.
期刊介绍:
The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.