使用电子健康记录诊断重度抑郁症和物质使用障碍:一项初步验证研究

Vinod Rao , Sylvia Lanni , Amy M. Yule , Maura DiSalvo , Mira Stone , Amy F. Berger , Timothy E. Wilens
{"title":"使用电子健康记录诊断重度抑郁症和物质使用障碍:一项初步验证研究","authors":"Vinod Rao ,&nbsp;Sylvia Lanni ,&nbsp;Amy M. Yule ,&nbsp;Maura DiSalvo ,&nbsp;Mira Stone ,&nbsp;Amy F. Berger ,&nbsp;Timothy E. Wilens","doi":"10.1016/j.xjmad.2023.100007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>One mechanism to examine if major depressive disorder (MDD) is related to the development of substance use disorder (SUD) is by leveraging naturalistic data available in the electronic health record (EHR). Rules for data extraction and variable construction linked to psychometrics validating their use are needed to extract data accurately.</p></div><div><h3>Objective</h3><p>We propose and validate a methodologic framework for using EHR variables to identify patients with MDD and non-nicotine SUD.</p></div><div><h3>Methods</h3><p>Proxy diagnoses and index dates of MDD and/or SUD were established using billing codes, problem lists, patient-reported outcome measures, and prescriptions. Manual chart reviews were conducted for the 1-year period surrounding each index date to determine (1) if proxy diagnoses were supported by chart notes and (2) if the index dates accurately captured disorder onset.</p></div><div><h3>Results</h3><p>The results demonstrated 100% positive predictive value for proxy diagnoses of MDD. The proxy diagnoses for SUD exhibited strong agreement (Cohen's kappa of 0.84) compared to manual chart review and 92% sensitivity, specificity, positive predictive value, and negative predictive value. Sixteen percent of patients showed inaccurate SUD index dates generated by EHR extraction with discrepancies of over 6 months compared to SUD onset identified through chart review.</p></div><div><h3>Conclusions</h3><p>Our methodology was very effective in identifying patients with MDD with or without SUD and moderately effective in identifying SUD onset date. These findings support the use of EHR data to make proxy diagnoses of MDD with or without SUD.</p></div>","PeriodicalId":73841,"journal":{"name":"Journal of mood and anxiety disorders","volume":"2 ","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diagnosing major depressive disorder and substance use disorder using the electronic health record: A preliminary validation study\",\"authors\":\"Vinod Rao ,&nbsp;Sylvia Lanni ,&nbsp;Amy M. Yule ,&nbsp;Maura DiSalvo ,&nbsp;Mira Stone ,&nbsp;Amy F. Berger ,&nbsp;Timothy E. Wilens\",\"doi\":\"10.1016/j.xjmad.2023.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>One mechanism to examine if major depressive disorder (MDD) is related to the development of substance use disorder (SUD) is by leveraging naturalistic data available in the electronic health record (EHR). Rules for data extraction and variable construction linked to psychometrics validating their use are needed to extract data accurately.</p></div><div><h3>Objective</h3><p>We propose and validate a methodologic framework for using EHR variables to identify patients with MDD and non-nicotine SUD.</p></div><div><h3>Methods</h3><p>Proxy diagnoses and index dates of MDD and/or SUD were established using billing codes, problem lists, patient-reported outcome measures, and prescriptions. Manual chart reviews were conducted for the 1-year period surrounding each index date to determine (1) if proxy diagnoses were supported by chart notes and (2) if the index dates accurately captured disorder onset.</p></div><div><h3>Results</h3><p>The results demonstrated 100% positive predictive value for proxy diagnoses of MDD. The proxy diagnoses for SUD exhibited strong agreement (Cohen's kappa of 0.84) compared to manual chart review and 92% sensitivity, specificity, positive predictive value, and negative predictive value. Sixteen percent of patients showed inaccurate SUD index dates generated by EHR extraction with discrepancies of over 6 months compared to SUD onset identified through chart review.</p></div><div><h3>Conclusions</h3><p>Our methodology was very effective in identifying patients with MDD with or without SUD and moderately effective in identifying SUD onset date. These findings support the use of EHR data to make proxy diagnoses of MDD with or without SUD.</p></div>\",\"PeriodicalId\":73841,\"journal\":{\"name\":\"Journal of mood and anxiety disorders\",\"volume\":\"2 \",\"pages\":\"Article 100007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of mood and anxiety disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S295000442300007X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mood and anxiety disorders","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295000442300007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究重度抑郁症(MDD)是否与物质使用障碍(SUD)的发展相关的一种机制是利用电子健康记录(EHR)中可用的自然数据。为了准确地提取数据,需要数据提取规则和与心理测量学相关的变量构造来验证它们的使用。目的我们提出并验证了一个使用电子病历变量来识别重度抑郁症和非尼古丁性SUD患者的方法学框架。方法采用计费代码、问题清单、患者报告的结局指标和处方建立MDD和/或SUD的代理诊断和指标日期。在每个索引日期周围的1年期间进行人工图表审查,以确定(1)是否有图表注释支持代理诊断,以及(2)索引日期是否准确地捕获了疾病的发病。结果该方法对重度抑郁症的代理诊断具有100%的阳性预测值。与手工图表检查相比,SUD的代理诊断表现出很强的一致性(Cohen’s kappa为0.84),敏感性、特异性、阳性预测值和阴性预测值为92%。16%的患者显示EHR提取产生的SUD指数日期不准确,与通过图表回顾确定的SUD发病相比,差异超过6个月。结论sour方法对MDD合并或不合并SUD患者的识别非常有效,对SUD发病日期的识别效果中等。这些发现支持使用电子病历数据对伴有或不伴有SUD的重度抑郁症进行代理诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosing major depressive disorder and substance use disorder using the electronic health record: A preliminary validation study

Background

One mechanism to examine if major depressive disorder (MDD) is related to the development of substance use disorder (SUD) is by leveraging naturalistic data available in the electronic health record (EHR). Rules for data extraction and variable construction linked to psychometrics validating their use are needed to extract data accurately.

Objective

We propose and validate a methodologic framework for using EHR variables to identify patients with MDD and non-nicotine SUD.

Methods

Proxy diagnoses and index dates of MDD and/or SUD were established using billing codes, problem lists, patient-reported outcome measures, and prescriptions. Manual chart reviews were conducted for the 1-year period surrounding each index date to determine (1) if proxy diagnoses were supported by chart notes and (2) if the index dates accurately captured disorder onset.

Results

The results demonstrated 100% positive predictive value for proxy diagnoses of MDD. The proxy diagnoses for SUD exhibited strong agreement (Cohen's kappa of 0.84) compared to manual chart review and 92% sensitivity, specificity, positive predictive value, and negative predictive value. Sixteen percent of patients showed inaccurate SUD index dates generated by EHR extraction with discrepancies of over 6 months compared to SUD onset identified through chart review.

Conclusions

Our methodology was very effective in identifying patients with MDD with or without SUD and moderately effective in identifying SUD onset date. These findings support the use of EHR data to make proxy diagnoses of MDD with or without SUD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of mood and anxiety disorders
Journal of mood and anxiety disorders Applied Psychology, Experimental and Cognitive Psychology, Clinical Psychology, Psychiatry and Mental Health, Psychology (General), Behavioral Neuroscience
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信