{"title":"低氧胁迫下er -线粒体接触处FUNDC1的分子调控。","authors":"Yi Zhang, Haixia Zhuang, Hao Liu, Du Feng","doi":"10.1177/25152564221092487","DOIUrl":null,"url":null,"abstract":"<p><p>A recent research paper published in Journal of Cell Biology by Chen and colleagues describes a novel mechanism by which the MAM (Mitochondrial-associated endoplasmic reticulum membrane) protein FUNDC1 (FUN14 domain-containing protein 1) regulates mitochondrial division through altered protein post-translational modifications under hypoxic stress. The authors found that in a hypoxic environment, the endoplasmic reticulum-localized deubiquitinating enzyme USP19 accumulates at the MAM and interacts with the enriched mitochondrial outer membrane protein FUNDC1, which subsequently induces its deubiquitination and promotes the oligomerization and activity of DRP1, and mitochondria eventually divide in the presence of DRP1. This article provides new insights into the regulation of mitochondrial dynamics by FUNDC1 under hypoxic condition.</p>","PeriodicalId":10556,"journal":{"name":"Contact (Thousand Oaks (Ventura County, Calif.))","volume":"5 ","pages":"25152564221092487"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/9c/10.1177_25152564221092487.PMC10243562.pdf","citationCount":"1","resultStr":"{\"title\":\"Molecular Regulations of FUNDC1 at ER-Mitochondria Contacts Under Hypoxic Stress.\",\"authors\":\"Yi Zhang, Haixia Zhuang, Hao Liu, Du Feng\",\"doi\":\"10.1177/25152564221092487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A recent research paper published in Journal of Cell Biology by Chen and colleagues describes a novel mechanism by which the MAM (Mitochondrial-associated endoplasmic reticulum membrane) protein FUNDC1 (FUN14 domain-containing protein 1) regulates mitochondrial division through altered protein post-translational modifications under hypoxic stress. The authors found that in a hypoxic environment, the endoplasmic reticulum-localized deubiquitinating enzyme USP19 accumulates at the MAM and interacts with the enriched mitochondrial outer membrane protein FUNDC1, which subsequently induces its deubiquitination and promotes the oligomerization and activity of DRP1, and mitochondria eventually divide in the presence of DRP1. This article provides new insights into the regulation of mitochondrial dynamics by FUNDC1 under hypoxic condition.</p>\",\"PeriodicalId\":10556,\"journal\":{\"name\":\"Contact (Thousand Oaks (Ventura County, Calif.))\",\"volume\":\"5 \",\"pages\":\"25152564221092487\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/9c/10.1177_25152564221092487.PMC10243562.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contact (Thousand Oaks (Ventura County, Calif.))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25152564221092487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact (Thousand Oaks (Ventura County, Calif.))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25152564221092487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Regulations of FUNDC1 at ER-Mitochondria Contacts Under Hypoxic Stress.
A recent research paper published in Journal of Cell Biology by Chen and colleagues describes a novel mechanism by which the MAM (Mitochondrial-associated endoplasmic reticulum membrane) protein FUNDC1 (FUN14 domain-containing protein 1) regulates mitochondrial division through altered protein post-translational modifications under hypoxic stress. The authors found that in a hypoxic environment, the endoplasmic reticulum-localized deubiquitinating enzyme USP19 accumulates at the MAM and interacts with the enriched mitochondrial outer membrane protein FUNDC1, which subsequently induces its deubiquitination and promotes the oligomerization and activity of DRP1, and mitochondria eventually divide in the presence of DRP1. This article provides new insights into the regulation of mitochondrial dynamics by FUNDC1 under hypoxic condition.