通过原位固化的混合交联固体聚合物电解质实现高性能固态锂金属电池。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kexin Mu, Dai Wang, Weiliang Dong, Qiang Liu, Zhennuo Song, Weijian Xu, Pingping Yao, Yin'an Chen, Bo Yang, Cuihua Li, Lei Tian, Caizhen Zhu, Jian Xu
{"title":"通过原位固化的混合交联固体聚合物电解质实现高性能固态锂金属电池。","authors":"Kexin Mu,&nbsp;Dai Wang,&nbsp;Weiliang Dong,&nbsp;Qiang Liu,&nbsp;Zhennuo Song,&nbsp;Weijian Xu,&nbsp;Pingping Yao,&nbsp;Yin'an Chen,&nbsp;Bo Yang,&nbsp;Cuihua Li,&nbsp;Lei Tian,&nbsp;Caizhen Zhu,&nbsp;Jian Xu","doi":"10.1002/adma.202304686","DOIUrl":null,"url":null,"abstract":"<p>Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10<sup>−3</sup> S cm<sup>−1</sup> at 30 °C, ultrahigh Li<sup>+</sup> transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm<sup>−2</sup>, which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 47","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hybrid Crosslinked Solid Polymer Electrolyte via In-Situ Solidification Enables High-Performance Solid-State Lithium Metal Batteries\",\"authors\":\"Kexin Mu,&nbsp;Dai Wang,&nbsp;Weiliang Dong,&nbsp;Qiang Liu,&nbsp;Zhennuo Song,&nbsp;Weijian Xu,&nbsp;Pingping Yao,&nbsp;Yin'an Chen,&nbsp;Bo Yang,&nbsp;Cuihua Li,&nbsp;Lei Tian,&nbsp;Caizhen Zhu,&nbsp;Jian Xu\",\"doi\":\"10.1002/adma.202304686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10<sup>−3</sup> S cm<sup>−1</sup> at 30 °C, ultrahigh Li<sup>+</sup> transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm<sup>−2</sup>, which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"35 47\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202304686\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202304686","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

通过环醚原位固化构建的固态锂金属电池被认为是下一代高能量密度和安全固态电池的关键策略。然而,线性聚醚较差的热/电化学稳定性和严重的界面反应限制了其进一步发展。本文提出了用于有机/无机杂化聚合物电解质(HCPE)的原位开环杂化交联聚合,其在30°C下具有2.22×10-3 S cm-1的优异离子电导率、0.88的超高Li+转移数和5.2V的宽电化学稳定性窗口,其还揭示了明确定义的界面稳定机制。因此,HCPE赋予组装的固态锂金属电池在2摄氏度(25°C)下超过600次循环的优异长循环性能和92.1%的优异容量保持率。更重要的是,所提出的不燃HCPE通过原位固化为促进高安全性和高能量密度固态电池的实际应用开辟了新的前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid Crosslinked Solid Polymer Electrolyte via In-Situ Solidification Enables High-Performance Solid-State Lithium Metal Batteries

Hybrid Crosslinked Solid Polymer Electrolyte via In-Situ Solidification Enables High-Performance Solid-State Lithium Metal Batteries

Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10−3 S cm−1 at 30 °C, ultrahigh Li+ transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm−2, which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信