因子混合建模框架下的零膨胀 DIF 检测。

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Educational and Psychological Measurement Pub Date : 2022-08-01 Epub Date: 2021-07-26 DOI:10.1177/00131644211028995
Sooyong Lee, Suhwa Han, Seung W Choi
{"title":"因子混合建模框架下的零膨胀 DIF 检测。","authors":"Sooyong Lee, Suhwa Han, Seung W Choi","doi":"10.1177/00131644211028995","DOIUrl":null,"url":null,"abstract":"<p><p>Response data containing an excessive number of zeros are referred to as zero-inflated data. When differential item functioning (DIF) detection is of interest, zero-inflation can attenuate DIF effects in the total sample and lead to underdetection of DIF items. The current study presents a DIF detection procedure for response data with excess zeros due to the existence of unobserved heterogeneous subgroups. The suggested procedure utilizes the factor mixture modeling (FMM) with MIMIC (multiple-indicator multiple-cause) to address the compromised DIF detection power via the estimation of latent classes. A Monte Carlo simulation was conducted to evaluate the suggested procedure in comparison to the well-known likelihood ratio (LR) DIF test. Our simulation study results indicated the superiority of FMM over the LR DIF test in terms of detection power and illustrated the importance of accounting for latent heterogeneity in zero-inflated data. The empirical data analysis results further supported the use of FMM by flagging additional DIF items over and above the LR test.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"82 4","pages":"678-704"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228697/pdf/10.1177_00131644211028995.pdf","citationCount":"0","resultStr":"{\"title\":\"DIF Detection With Zero-Inflation Under the Factor Mixture Modeling Framework.\",\"authors\":\"Sooyong Lee, Suhwa Han, Seung W Choi\",\"doi\":\"10.1177/00131644211028995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Response data containing an excessive number of zeros are referred to as zero-inflated data. When differential item functioning (DIF) detection is of interest, zero-inflation can attenuate DIF effects in the total sample and lead to underdetection of DIF items. The current study presents a DIF detection procedure for response data with excess zeros due to the existence of unobserved heterogeneous subgroups. The suggested procedure utilizes the factor mixture modeling (FMM) with MIMIC (multiple-indicator multiple-cause) to address the compromised DIF detection power via the estimation of latent classes. A Monte Carlo simulation was conducted to evaluate the suggested procedure in comparison to the well-known likelihood ratio (LR) DIF test. Our simulation study results indicated the superiority of FMM over the LR DIF test in terms of detection power and illustrated the importance of accounting for latent heterogeneity in zero-inflated data. The empirical data analysis results further supported the use of FMM by flagging additional DIF items over and above the LR test.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\"82 4\",\"pages\":\"678-704\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228697/pdf/10.1177_00131644211028995.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644211028995\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644211028995","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

包含过多零的响应数据被称为零膨胀数据。当需要进行差异项目功能(DIF)检测时,零膨胀会削弱总体样本中的 DIF 效应,导致 DIF 项目检测不足。本研究提出了一种 DIF 检测程序,适用于因存在未观察到的异质子群而出现过多零的响应数据。建议的程序利用带有 MIMIC(多指标多原因)的因子混合建模(FMM),通过估计潜类来解决 DIF 检测能力不足的问题。我们进行了蒙特卡罗模拟,以评估建议程序与著名的似然比 (LR) DIF 检验的比较。模拟研究结果表明,就检测能力而言,FMM 优于 LR DIF 检验,并说明了在零膨胀数据中考虑潜在异质性的重要性。实证数据分析结果进一步支持了 FMM 的使用,在 LR 检验基础上标记出了额外的 DIF 项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIF Detection With Zero-Inflation Under the Factor Mixture Modeling Framework.

Response data containing an excessive number of zeros are referred to as zero-inflated data. When differential item functioning (DIF) detection is of interest, zero-inflation can attenuate DIF effects in the total sample and lead to underdetection of DIF items. The current study presents a DIF detection procedure for response data with excess zeros due to the existence of unobserved heterogeneous subgroups. The suggested procedure utilizes the factor mixture modeling (FMM) with MIMIC (multiple-indicator multiple-cause) to address the compromised DIF detection power via the estimation of latent classes. A Monte Carlo simulation was conducted to evaluate the suggested procedure in comparison to the well-known likelihood ratio (LR) DIF test. Our simulation study results indicated the superiority of FMM over the LR DIF test in terms of detection power and illustrated the importance of accounting for latent heterogeneity in zero-inflated data. The empirical data analysis results further supported the use of FMM by flagging additional DIF items over and above the LR test.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信