Pol III转录组:癌症的基本特征、复发模式和新出现的作用。

IF 6.4 2区 生物学 Q1 CELL BIOLOGY
Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-01 Epub Date: 2023-02-08 DOI:10.1002/wrna.1782
Sihang Zhou, Kevin Van Bortle
{"title":"Pol III转录组:癌症的基本特征、复发模式和新出现的作用。","authors":"Sihang Zhou, Kevin Van Bortle","doi":"10.1002/wrna.1782","DOIUrl":null,"url":null,"abstract":"<p><p>The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"14 5","pages":"e1782"},"PeriodicalIF":6.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498592/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer.\",\"authors\":\"Sihang Zhou, Kevin Van Bortle\",\"doi\":\"10.1002/wrna.1782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>\",\"PeriodicalId\":23886,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: RNA\",\"volume\":\"14 5\",\"pages\":\"e1782\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498592/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/wrna.1782\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1782","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RNA聚合酶III(Pol III)转录组普遍由短的、高度结构化的非编码RNA(ncRNA)组成。通过RNA-蛋白质相互作用,Pol III转录组启动从核基因调控(7SK)、剪接(U6、U6atac)、RNA成熟和稳定性(RMRP、RPPH1、Y RNA)到细胞质蛋白靶向(7SL)和翻译(tRNA、5S rRNA)的功能活动。在高等真核生物中,Pol III转录组已经扩展到包括额外的、最近进化的ncRNA物种,这些物种有效地将Pol III的转录足迹扩大到额外的细胞活动。新进化的ncRNA作为自噬(vault)、免疫信号级联(nc886)和翻译(Alu,BC200,snaR)的核糖调节因子发挥作用。值得注意的是,在癌症中经常观察到Pol III转录的上调,并且在癌症患者中,多种ncRNA物种与癌症进展和不良生存结果有关。在这篇综述中,我们概述了Pol III转录组的基本特征和功能,以及癌症中每种ncRNA的失调和功能障碍的证据。综合起来,出现了重复的模式,从包括分子支架和蛋白质固定、重叠的蛋白质相互作用和免疫刺激活性的共享功能基序,到类似的小RNA片段和非经典miRNA的生物发生,增强了Pol III转录组的功能,并进一步扩大了其在癌症中的作用。这篇文章分类为:RNA在疾病和发展中>RNA在疾病RNA加工中>小RNA的加工RNA与蛋白质和其他分子的相互作用>蛋白质-RNA相互作用:功能意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer.

The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer.

The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer.

The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer.

The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信