含有多柔比星和五环三萜桦木酸的基于血清白蛋白的协同 pH 响应给药系统,有望用于治疗 NSCLC。

IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
BioTech Pub Date : 2023-01-26 DOI:10.3390/biotech12010013
Zally Torres-Martinez, Daraishka Pérez, Grace Torres, Sthephanie Estrada, Clarissa Correa, Natasha Mederos, Kimberly Velazquez, Betzaida Castillo, Kai Griebenow, Yamixa Delgado
{"title":"含有多柔比星和五环三萜桦木酸的基于血清白蛋白的协同 pH 响应给药系统,有望用于治疗 NSCLC。","authors":"Zally Torres-Martinez, Daraishka Pérez, Grace Torres, Sthephanie Estrada, Clarissa Correa, Natasha Mederos, Kimberly Velazquez, Betzaida Castillo, Kai Griebenow, Yamixa Delgado","doi":"10.3390/biotech12010013","DOIUrl":null,"url":null,"abstract":"<p><p>Nanosized drug delivery systems (DDS) have been studied as a novel strategy against cancer due to their potential to simultaneously decrease drug inactivation and systemic toxicity and increase passive and/or active drug accumulation within the tumor(s). Triterpenes are plant-derived compounds with interesting therapeutic properties. Betulinic acid (BeA) is a pentacyclic triterpene that has great cytotoxic activity against different cancer types. Herein, we developed a nanosized protein-based DDS of bovine serum albumin (BSA) as the drug carrier combining two compounds, doxorubicin (Dox) and the triterpene BeA, using an oil-water-like micro-emulsion method. We used spectrophotometric assays to determine protein and drug concentrations in the DDS. The biophysical properties of these DDS were characterized using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy, confirming nanoparticle (NP) formation and drug loading into the protein structure, respectively. The encapsulation efficiency was 77% for Dox and 18% for BeA. More than 50% of both drugs were released within 24 h at pH 6.8, while less drug was released at pH 7.4 in this period. Co-incubation viability assays of Dox and BeA alone for 24 h demonstrated synergistic cytotoxic activity in the low μM range against non-small-cell lung carcinoma (NSCLC) A549 cells. Viability assays of the BSA-(Dox+BeA) DDS demonstrated a higher synergistic cytotoxic activity than the two drugs with no carrier. Moreover, confocal microscopy analysis confirmed the cellular internalization of the DDS and the accumulation of the Dox in the nucleus. We determined the mechanism of action of the BSA-(Dox+BeA) DDS, confirming S-phase cell cycle arrest, DNA damage, caspase cascade activation, and downregulation of epidermal growth factor receptor (EGFR) expression. This DDS has the potential to synergistically maximize the therapeutic effect of Dox and diminish chemoresistance induced by EGFR expression using a natural triterpene against NSCLC.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944877/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Synergistic pH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC.\",\"authors\":\"Zally Torres-Martinez, Daraishka Pérez, Grace Torres, Sthephanie Estrada, Clarissa Correa, Natasha Mederos, Kimberly Velazquez, Betzaida Castillo, Kai Griebenow, Yamixa Delgado\",\"doi\":\"10.3390/biotech12010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanosized drug delivery systems (DDS) have been studied as a novel strategy against cancer due to their potential to simultaneously decrease drug inactivation and systemic toxicity and increase passive and/or active drug accumulation within the tumor(s). Triterpenes are plant-derived compounds with interesting therapeutic properties. Betulinic acid (BeA) is a pentacyclic triterpene that has great cytotoxic activity against different cancer types. Herein, we developed a nanosized protein-based DDS of bovine serum albumin (BSA) as the drug carrier combining two compounds, doxorubicin (Dox) and the triterpene BeA, using an oil-water-like micro-emulsion method. We used spectrophotometric assays to determine protein and drug concentrations in the DDS. The biophysical properties of these DDS were characterized using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy, confirming nanoparticle (NP) formation and drug loading into the protein structure, respectively. The encapsulation efficiency was 77% for Dox and 18% for BeA. More than 50% of both drugs were released within 24 h at pH 6.8, while less drug was released at pH 7.4 in this period. Co-incubation viability assays of Dox and BeA alone for 24 h demonstrated synergistic cytotoxic activity in the low μM range against non-small-cell lung carcinoma (NSCLC) A549 cells. Viability assays of the BSA-(Dox+BeA) DDS demonstrated a higher synergistic cytotoxic activity than the two drugs with no carrier. Moreover, confocal microscopy analysis confirmed the cellular internalization of the DDS and the accumulation of the Dox in the nucleus. We determined the mechanism of action of the BSA-(Dox+BeA) DDS, confirming S-phase cell cycle arrest, DNA damage, caspase cascade activation, and downregulation of epidermal growth factor receptor (EGFR) expression. This DDS has the potential to synergistically maximize the therapeutic effect of Dox and diminish chemoresistance induced by EGFR expression using a natural triterpene against NSCLC.</p>\",\"PeriodicalId\":34490,\"journal\":{\"name\":\"BioTech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biotech12010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech12010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纳米级给药系统(DDS)可同时降低药物失活和全身毒性,并增加药物在肿瘤内的被动和/或主动蓄积,因此被作为一种新型抗癌策略进行研究。三萜类化合物是从植物中提取的化合物,具有有趣的治疗特性。白桦脂酸(BeA)是一种五环三萜类化合物,对不同类型的癌症具有很强的细胞毒活性。在此,我们以牛血清白蛋白(BSA)为药物载体,采用油-水型微乳液法开发了一种纳米级蛋白型 DDS,将多柔比星(Dox)和三萜类化合物 BeA 结合在一起。我们使用分光光度法测定 DDS 中的蛋白质和药物浓度。我们使用动态光散射(DLS)和圆二色光谱(CD)对这些 DDS 的生物物理特性进行了表征,分别证实了纳米颗粒(NP)的形成和蛋白质结构中的药物负载。Dox和BeA的封装效率分别为77%和18%。在 pH 值为 6.8 的条件下,两种药物在 24 小时内的释放量都超过了 50%,而在 pH 值为 7.4 的条件下,药物在此期间的释放量较少。单独使用 Dox 和 BeA 进行 24 小时的共孵育活力测定表明,它们对非小细胞肺癌(NSCLC)A549 细胞的协同细胞毒性活性在低μM 范围内。BSA-(Dox+BeA) DDS 的活力测定显示,其协同细胞毒性活性高于不含载体的两种药物。此外,共聚焦显微镜分析证实了 DDS 的细胞内化和 Dox 在细胞核中的积累。我们确定了 BSA-(Dox+BeA)DDS 的作用机制,证实了 S 期细胞周期停滞、DNA 损伤、caspase cascade 激活和表皮生长因子受体(EGFR)表达下调。这种 DDS 具有协同增效的潜力,能最大限度地提高 Dox 的治疗效果,并利用天然三萜类化合物减少表皮生长因子受体表达诱导的 NSCLC 化疗耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Synergistic pH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC.

A Synergistic pH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC.

A Synergistic pH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC.

A Synergistic pH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC.

Nanosized drug delivery systems (DDS) have been studied as a novel strategy against cancer due to their potential to simultaneously decrease drug inactivation and systemic toxicity and increase passive and/or active drug accumulation within the tumor(s). Triterpenes are plant-derived compounds with interesting therapeutic properties. Betulinic acid (BeA) is a pentacyclic triterpene that has great cytotoxic activity against different cancer types. Herein, we developed a nanosized protein-based DDS of bovine serum albumin (BSA) as the drug carrier combining two compounds, doxorubicin (Dox) and the triterpene BeA, using an oil-water-like micro-emulsion method. We used spectrophotometric assays to determine protein and drug concentrations in the DDS. The biophysical properties of these DDS were characterized using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy, confirming nanoparticle (NP) formation and drug loading into the protein structure, respectively. The encapsulation efficiency was 77% for Dox and 18% for BeA. More than 50% of both drugs were released within 24 h at pH 6.8, while less drug was released at pH 7.4 in this period. Co-incubation viability assays of Dox and BeA alone for 24 h demonstrated synergistic cytotoxic activity in the low μM range against non-small-cell lung carcinoma (NSCLC) A549 cells. Viability assays of the BSA-(Dox+BeA) DDS demonstrated a higher synergistic cytotoxic activity than the two drugs with no carrier. Moreover, confocal microscopy analysis confirmed the cellular internalization of the DDS and the accumulation of the Dox in the nucleus. We determined the mechanism of action of the BSA-(Dox+BeA) DDS, confirming S-phase cell cycle arrest, DNA damage, caspase cascade activation, and downregulation of epidermal growth factor receptor (EGFR) expression. This DDS has the potential to synergistically maximize the therapeutic effect of Dox and diminish chemoresistance induced by EGFR expression using a natural triterpene against NSCLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信