Shervin Sheikh, Fariborz Ghojoghi, Afshin Ghelichi, Sarah Jorjani
{"title":"硒纳米粒子对尼罗罗非鱼(Oreochromis niloticus)生长性能、存活率、化学成分和肌肉生物累积的日粮影响。","authors":"Shervin Sheikh, Fariborz Ghojoghi, Afshin Ghelichi, Sarah Jorjani","doi":"10.1007/s12011-023-03836-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the effect of selenium nanoparticles on growth performance, survival rate, chemical composition, and bioaccumulation of selenium in the muscle of Nile tilapia (Oreochromis niloticus). Fish with an average weight of 33.1 ± 1.0 g were distributed in 12 fiberglass tanks and fed for 56 days with different levels of selenium nanoparticles, 0, 0.5, 1, and 2 mg/kg of diet, considered as control, T1, T2, and T3, respectively. Body weight increase (BWI), specific growth rate (SGR), and food conversion ratio (FCR) were significantly influenced by 2 mg/kg of selenium nanoparticles compared to the other treatments, in particular control and T1 with 0.5 mg/kg selenium (P < 0.05). The survival rate was also significantly affected in T2, especially compared to the control (P < 0.05). In addition, protein, ash, and moisture percentages of muscle showed statistically different levels in fish fed a diet containing 2 mg/kg of selenium nanoparticles compared to the control treatment (P < 0.05). The results of the selenium bioaccumulation in the muscle of trial diets showed a significant difference in selenium nanoparticle bioaccumulation among treatments, with the highest revealed in the 2 mg/kg nanoparticle group (P < 0.05). Overall, selenium nanoparticles significantly improved the growth performance, survival, and chemical composition (protein in particular) of Nile tilapia, especially in the T2 and T3 treatments.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"2308-2313"},"PeriodicalIF":3.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary Effects of Selenium Nanoparticles on Growth Performance, Survival Rate, Chemical Composition, and Muscle Bioaccumulation of Nile Tilapia (Oreochromis niloticus).\",\"authors\":\"Shervin Sheikh, Fariborz Ghojoghi, Afshin Ghelichi, Sarah Jorjani\",\"doi\":\"10.1007/s12011-023-03836-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the effect of selenium nanoparticles on growth performance, survival rate, chemical composition, and bioaccumulation of selenium in the muscle of Nile tilapia (Oreochromis niloticus). Fish with an average weight of 33.1 ± 1.0 g were distributed in 12 fiberglass tanks and fed for 56 days with different levels of selenium nanoparticles, 0, 0.5, 1, and 2 mg/kg of diet, considered as control, T1, T2, and T3, respectively. Body weight increase (BWI), specific growth rate (SGR), and food conversion ratio (FCR) were significantly influenced by 2 mg/kg of selenium nanoparticles compared to the other treatments, in particular control and T1 with 0.5 mg/kg selenium (P < 0.05). The survival rate was also significantly affected in T2, especially compared to the control (P < 0.05). In addition, protein, ash, and moisture percentages of muscle showed statistically different levels in fish fed a diet containing 2 mg/kg of selenium nanoparticles compared to the control treatment (P < 0.05). The results of the selenium bioaccumulation in the muscle of trial diets showed a significant difference in selenium nanoparticle bioaccumulation among treatments, with the highest revealed in the 2 mg/kg nanoparticle group (P < 0.05). Overall, selenium nanoparticles significantly improved the growth performance, survival, and chemical composition (protein in particular) of Nile tilapia, especially in the T2 and T3 treatments.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"2308-2313\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-023-03836-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-023-03836-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dietary Effects of Selenium Nanoparticles on Growth Performance, Survival Rate, Chemical Composition, and Muscle Bioaccumulation of Nile Tilapia (Oreochromis niloticus).
This study evaluated the effect of selenium nanoparticles on growth performance, survival rate, chemical composition, and bioaccumulation of selenium in the muscle of Nile tilapia (Oreochromis niloticus). Fish with an average weight of 33.1 ± 1.0 g were distributed in 12 fiberglass tanks and fed for 56 days with different levels of selenium nanoparticles, 0, 0.5, 1, and 2 mg/kg of diet, considered as control, T1, T2, and T3, respectively. Body weight increase (BWI), specific growth rate (SGR), and food conversion ratio (FCR) were significantly influenced by 2 mg/kg of selenium nanoparticles compared to the other treatments, in particular control and T1 with 0.5 mg/kg selenium (P < 0.05). The survival rate was also significantly affected in T2, especially compared to the control (P < 0.05). In addition, protein, ash, and moisture percentages of muscle showed statistically different levels in fish fed a diet containing 2 mg/kg of selenium nanoparticles compared to the control treatment (P < 0.05). The results of the selenium bioaccumulation in the muscle of trial diets showed a significant difference in selenium nanoparticle bioaccumulation among treatments, with the highest revealed in the 2 mg/kg nanoparticle group (P < 0.05). Overall, selenium nanoparticles significantly improved the growth performance, survival, and chemical composition (protein in particular) of Nile tilapia, especially in the T2 and T3 treatments.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.