Dongwook Yang, Jea Giezl Niedo Solidum, Dongsu Park
{"title":"牙髓干细胞和目前研究牙髓干细胞在牙髓损伤和再生中的体内方法。","authors":"Dongwook Yang, Jea Giezl Niedo Solidum, Dongsu Park","doi":"10.11005/jbm.2023.30.3.231","DOIUrl":null,"url":null,"abstract":"<p><p>Dental pulp stem cells (DPSCs) have garnered significant interest in dental research for their unique characteristics and potential in tooth development and regeneration. While there were many studies to define their stem cell-like characteristics and osteogenic differentiation functions that are considered ideal candidates for regenerating damaged dental pulp tissue, how endogenous DPSCs respond to dental pulp injury and supply new dentin-forming cells has not been extensively investigated in vivo. Here, we review the recent progress in identity, function, and regulation of endogenous DPSCs and their clinical potential for pulp injury and regeneration. In addition, we discuss current advances in new mouse models, imaging techniques, and its practical uses and limitations in the analysis of DPSCs in pulp injury and regeneration in vivo.</p>","PeriodicalId":15070,"journal":{"name":"Journal of Bone Metabolism","volume":"30 3","pages":"231-244"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f8/67/jbm-2023-30-3-231.PMC10509030.pdf","citationCount":"0","resultStr":"{\"title\":\"Dental Pulp Stem Cells and Current in vivo Approaches to Study Dental Pulp Stem Cells in Pulp Injury and Regeneration.\",\"authors\":\"Dongwook Yang, Jea Giezl Niedo Solidum, Dongsu Park\",\"doi\":\"10.11005/jbm.2023.30.3.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dental pulp stem cells (DPSCs) have garnered significant interest in dental research for their unique characteristics and potential in tooth development and regeneration. While there were many studies to define their stem cell-like characteristics and osteogenic differentiation functions that are considered ideal candidates for regenerating damaged dental pulp tissue, how endogenous DPSCs respond to dental pulp injury and supply new dentin-forming cells has not been extensively investigated in vivo. Here, we review the recent progress in identity, function, and regulation of endogenous DPSCs and their clinical potential for pulp injury and regeneration. In addition, we discuss current advances in new mouse models, imaging techniques, and its practical uses and limitations in the analysis of DPSCs in pulp injury and regeneration in vivo.</p>\",\"PeriodicalId\":15070,\"journal\":{\"name\":\"Journal of Bone Metabolism\",\"volume\":\"30 3\",\"pages\":\"231-244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f8/67/jbm-2023-30-3-231.PMC10509030.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11005/jbm.2023.30.3.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11005/jbm.2023.30.3.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Dental Pulp Stem Cells and Current in vivo Approaches to Study Dental Pulp Stem Cells in Pulp Injury and Regeneration.
Dental pulp stem cells (DPSCs) have garnered significant interest in dental research for their unique characteristics and potential in tooth development and regeneration. While there were many studies to define their stem cell-like characteristics and osteogenic differentiation functions that are considered ideal candidates for regenerating damaged dental pulp tissue, how endogenous DPSCs respond to dental pulp injury and supply new dentin-forming cells has not been extensively investigated in vivo. Here, we review the recent progress in identity, function, and regulation of endogenous DPSCs and their clinical potential for pulp injury and regeneration. In addition, we discuss current advances in new mouse models, imaging techniques, and its practical uses and limitations in the analysis of DPSCs in pulp injury and regeneration in vivo.