Dong Li , Xiang Li Sr , Jiahe Wang , Haiying Li , Haitao Shen , Xiang Xu , Gang Chen
{"title":"信号蛋白4c的断裂干扰了信号蛋白4c /丛蛋白B2通路对实验性脑出血大鼠的神经保护作用","authors":"Dong Li , Xiang Li Sr , Jiahe Wang , Haiying Li , Haitao Shen , Xiang Xu , Gang Chen","doi":"10.1016/j.jchemneu.2023.102318","DOIUrl":null,"url":null,"abstract":"<div><p><span>Semaphorin<span><span> 4 C (SEMA4C) and its cognate receptor Plexin B2 are important regulators of </span>axon guidance<span><span> and are involved in many neurological diseases, in which SEMA4C acts not only as a ligand (\"forward\" mode) but also as a signaling receptor (\"reverse\" mode). However, the role of SEMA4C/Plexin B2 in </span>intracerebral hemorrhage (ICH) remains unclear. In this study, ICH in adult male Sprague-Dawley rats was induced by </span></span></span>autologous blood injection<span> in the right basal ganglia. In vitro, cultured primary neurons were subjected to OxyHb<span><span><span> to imitate ICH injury. Recombinant SEMA4C (rSEMA4C) and overexpressing lentiviruses encoding full-length SEMA4C or secretory SEMA4C (sSEMA4C) were administered to rats by intraventricular injection. First, we found that elevated levels of sSEMA4C in the cerebrospinal fluid (CSF) of clinical patients were associated with poor prognosis. Both SEMA4C and sSEMA4C were increased in brain tissue around the </span>hematoma after ICH in rats. Overexpression of SEMA4C attenuated </span>neuronal apoptosis<span>, neurosis<span>, and neurologic impairment after ICH. However, treatment with rSEMA4C or sSEMA4C overexpression exacerbated neuronal injury. In addition, when treated with SEMA4C overexpression, the forward mode downstream protein RhoA and the reverse mode downstream ID1/3 transcriptional factors of SEMA4C/Plexin B2 signaling were all activated. Nevertheless, when exposed to rSEMA4C or sSEMA4C overexpression, only the forward mode was activated. Thus, sSEMA4C may be a novel molecular biomarker to predict the prognosis of patients with ICH, and the prevention of SEMA4C cleavage is expected to be a promising therapeutic target.</span></span></span></span></p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"132 ","pages":"Article 102318"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cleavage of semaphorin 4 C interferes with the neuroprotective effect of the semaphorin 4 C/Plexin B2 pathway on experimental intracerebral hemorrhage in rats\",\"authors\":\"Dong Li , Xiang Li Sr , Jiahe Wang , Haiying Li , Haitao Shen , Xiang Xu , Gang Chen\",\"doi\":\"10.1016/j.jchemneu.2023.102318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Semaphorin<span><span> 4 C (SEMA4C) and its cognate receptor Plexin B2 are important regulators of </span>axon guidance<span><span> and are involved in many neurological diseases, in which SEMA4C acts not only as a ligand (\\\"forward\\\" mode) but also as a signaling receptor (\\\"reverse\\\" mode). However, the role of SEMA4C/Plexin B2 in </span>intracerebral hemorrhage (ICH) remains unclear. In this study, ICH in adult male Sprague-Dawley rats was induced by </span></span></span>autologous blood injection<span> in the right basal ganglia. In vitro, cultured primary neurons were subjected to OxyHb<span><span><span> to imitate ICH injury. Recombinant SEMA4C (rSEMA4C) and overexpressing lentiviruses encoding full-length SEMA4C or secretory SEMA4C (sSEMA4C) were administered to rats by intraventricular injection. First, we found that elevated levels of sSEMA4C in the cerebrospinal fluid (CSF) of clinical patients were associated with poor prognosis. Both SEMA4C and sSEMA4C were increased in brain tissue around the </span>hematoma after ICH in rats. Overexpression of SEMA4C attenuated </span>neuronal apoptosis<span>, neurosis<span>, and neurologic impairment after ICH. However, treatment with rSEMA4C or sSEMA4C overexpression exacerbated neuronal injury. In addition, when treated with SEMA4C overexpression, the forward mode downstream protein RhoA and the reverse mode downstream ID1/3 transcriptional factors of SEMA4C/Plexin B2 signaling were all activated. Nevertheless, when exposed to rSEMA4C or sSEMA4C overexpression, only the forward mode was activated. Thus, sSEMA4C may be a novel molecular biomarker to predict the prognosis of patients with ICH, and the prevention of SEMA4C cleavage is expected to be a promising therapeutic target.</span></span></span></span></p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":\"132 \",\"pages\":\"Article 102318\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891061823000881\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061823000881","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cleavage of semaphorin 4 C interferes with the neuroprotective effect of the semaphorin 4 C/Plexin B2 pathway on experimental intracerebral hemorrhage in rats
Semaphorin 4 C (SEMA4C) and its cognate receptor Plexin B2 are important regulators of axon guidance and are involved in many neurological diseases, in which SEMA4C acts not only as a ligand ("forward" mode) but also as a signaling receptor ("reverse" mode). However, the role of SEMA4C/Plexin B2 in intracerebral hemorrhage (ICH) remains unclear. In this study, ICH in adult male Sprague-Dawley rats was induced by autologous blood injection in the right basal ganglia. In vitro, cultured primary neurons were subjected to OxyHb to imitate ICH injury. Recombinant SEMA4C (rSEMA4C) and overexpressing lentiviruses encoding full-length SEMA4C or secretory SEMA4C (sSEMA4C) were administered to rats by intraventricular injection. First, we found that elevated levels of sSEMA4C in the cerebrospinal fluid (CSF) of clinical patients were associated with poor prognosis. Both SEMA4C and sSEMA4C were increased in brain tissue around the hematoma after ICH in rats. Overexpression of SEMA4C attenuated neuronal apoptosis, neurosis, and neurologic impairment after ICH. However, treatment with rSEMA4C or sSEMA4C overexpression exacerbated neuronal injury. In addition, when treated with SEMA4C overexpression, the forward mode downstream protein RhoA and the reverse mode downstream ID1/3 transcriptional factors of SEMA4C/Plexin B2 signaling were all activated. Nevertheless, when exposed to rSEMA4C or sSEMA4C overexpression, only the forward mode was activated. Thus, sSEMA4C may be a novel molecular biomarker to predict the prognosis of patients with ICH, and the prevention of SEMA4C cleavage is expected to be a promising therapeutic target.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.