ipsc衍生的TDP-43基因突变运动神经元对氧化应激的特异性易感性

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Asako Onda-Ohto, Minami Hasegawa-Ogawa, Hiromasa Matsuno, Tomotaka Shiraishi, Keiko Bono, Hiromi Hiraki, Yumi Kanegae, Yasuyuki Iguchi, Hirotaka James Okano
{"title":"ipsc衍生的TDP-43基因突变运动神经元对氧化应激的特异性易感性","authors":"Asako Onda-Ohto,&nbsp;Minami Hasegawa-Ogawa,&nbsp;Hiromasa Matsuno,&nbsp;Tomotaka Shiraishi,&nbsp;Keiko Bono,&nbsp;Hiromi Hiraki,&nbsp;Yumi Kanegae,&nbsp;Yasuyuki Iguchi,&nbsp;Hirotaka James Okano","doi":"10.1186/s13041-023-01050-w","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a disease that affects motor neurons and has a poor prognosis. We focused on TAR DNA-binding protein 43 kDa (TDP-43), which is a common component of neuronal inclusions in many ALS patients. To analyze the contribution of TDP-43 mutations to ALS in human cells, we first introduced TDP-43 mutations into healthy human iPSCs using CRISPR/Cas9 gene editing technology, induced the differentiation of these cells into motor and sensory neurons, and analyzed factors that are assumed to be altered in or associated with ALS (cell morphology, TDP-43 localization and aggregate formation, cell death, TDP-43 splicing function, etc.). We aimed to clarify the pathological alterations caused solely by TDP-43 mutation, i.e., the changes in human iPSC-derived neurons with TDP-43 mutation compared with those with the same genetic background except TDP-43 mutation. Oxidative stress induced by hydrogen peroxide administration caused the death of TDP-43 mutant-expressing motor neurons but not in sensory neurons, indicating the specific vulnerability of human iPSC-derived motor neurons with TDP-43 mutation to oxidative stress. In our model, we observed aggregate formation in a small fraction of TDP-43 mutant-expressing motor neurons, suggesting that aggregate formation seems to be related to ALS pathology but not the direct cause of cell death. This study provides basic knowledge for elucidating the pathogenesis of ALS and developing treatments for the disease.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369818/pdf/","citationCount":"1","resultStr":"{\"title\":\"Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress.\",\"authors\":\"Asako Onda-Ohto,&nbsp;Minami Hasegawa-Ogawa,&nbsp;Hiromasa Matsuno,&nbsp;Tomotaka Shiraishi,&nbsp;Keiko Bono,&nbsp;Hiromi Hiraki,&nbsp;Yumi Kanegae,&nbsp;Yasuyuki Iguchi,&nbsp;Hirotaka James Okano\",\"doi\":\"10.1186/s13041-023-01050-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic lateral sclerosis (ALS) is a disease that affects motor neurons and has a poor prognosis. We focused on TAR DNA-binding protein 43 kDa (TDP-43), which is a common component of neuronal inclusions in many ALS patients. To analyze the contribution of TDP-43 mutations to ALS in human cells, we first introduced TDP-43 mutations into healthy human iPSCs using CRISPR/Cas9 gene editing technology, induced the differentiation of these cells into motor and sensory neurons, and analyzed factors that are assumed to be altered in or associated with ALS (cell morphology, TDP-43 localization and aggregate formation, cell death, TDP-43 splicing function, etc.). We aimed to clarify the pathological alterations caused solely by TDP-43 mutation, i.e., the changes in human iPSC-derived neurons with TDP-43 mutation compared with those with the same genetic background except TDP-43 mutation. Oxidative stress induced by hydrogen peroxide administration caused the death of TDP-43 mutant-expressing motor neurons but not in sensory neurons, indicating the specific vulnerability of human iPSC-derived motor neurons with TDP-43 mutation to oxidative stress. In our model, we observed aggregate formation in a small fraction of TDP-43 mutant-expressing motor neurons, suggesting that aggregate formation seems to be related to ALS pathology but not the direct cause of cell death. This study provides basic knowledge for elucidating the pathogenesis of ALS and developing treatments for the disease.</p>\",\"PeriodicalId\":18851,\"journal\":{\"name\":\"Molecular Brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369818/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13041-023-01050-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-023-01050-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

肌萎缩侧索硬化症(ALS)是一种影响运动神经元的疾病,预后较差。我们重点研究了TAR dna结合蛋白43 kDa (TDP-43),这是许多ALS患者神经元包体的共同成分。为了分析TDP-43突变对人细胞ALS的贡献,我们首先利用CRISPR/Cas9基因编辑技术将TDP-43突变导入健康的人iPSCs,诱导这些细胞分化为运动和感觉神经元,并分析了被认为在ALS中改变或相关的因素(细胞形态、TDP-43定位和聚集形成、细胞死亡、TDP-43剪接功能等)。我们的目的是阐明单纯由TDP-43突变引起的病理改变,即TDP-43突变的人ipsc来源的神经元与除TDP-43突变外具有相同遗传背景的神经元的变化。过氧化氢诱导的氧化应激可导致表达TDP-43突变的运动神经元死亡,但不影响感觉神经元,这表明人类ipsc来源的TDP-43突变的运动神经元对氧化应激的特异性易感性。在我们的模型中,我们在一小部分表达TDP-43突变的运动神经元中观察到聚集体的形成,这表明聚集体的形成似乎与ALS病理有关,但不是细胞死亡的直接原因。本研究为阐明ALS的发病机制和开发治疗方法提供了基础知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress.

Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress.

Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress.

Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress.

Amyotrophic lateral sclerosis (ALS) is a disease that affects motor neurons and has a poor prognosis. We focused on TAR DNA-binding protein 43 kDa (TDP-43), which is a common component of neuronal inclusions in many ALS patients. To analyze the contribution of TDP-43 mutations to ALS in human cells, we first introduced TDP-43 mutations into healthy human iPSCs using CRISPR/Cas9 gene editing technology, induced the differentiation of these cells into motor and sensory neurons, and analyzed factors that are assumed to be altered in or associated with ALS (cell morphology, TDP-43 localization and aggregate formation, cell death, TDP-43 splicing function, etc.). We aimed to clarify the pathological alterations caused solely by TDP-43 mutation, i.e., the changes in human iPSC-derived neurons with TDP-43 mutation compared with those with the same genetic background except TDP-43 mutation. Oxidative stress induced by hydrogen peroxide administration caused the death of TDP-43 mutant-expressing motor neurons but not in sensory neurons, indicating the specific vulnerability of human iPSC-derived motor neurons with TDP-43 mutation to oxidative stress. In our model, we observed aggregate formation in a small fraction of TDP-43 mutant-expressing motor neurons, suggesting that aggregate formation seems to be related to ALS pathology but not the direct cause of cell death. This study provides basic knowledge for elucidating the pathogenesis of ALS and developing treatments for the disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信