{"title":"小鼠抗犬PD-L1单克隆抗体的体外免疫组织化学制备及在犬肿瘤中的表达。","authors":"Sirintra Sirivisoot, Chatikorn Boonkrai, Tossapon Wongtangprasert, Tanapati Phakham, Phijitra Muanwein, Trairak Pisitkun, Chenphop Sawangmake, Araya Radtanakatikanon, Anudep Rungsipipat","doi":"10.1080/01652176.2023.2240380","DOIUrl":null,"url":null,"abstract":"<p><p>Immune escape is the hallmark of carcinogenesis. This widely known mechanism is the overexpression of immune checkpoint ligands, such as programmed cell death protein 1 and programmed death-ligand 1 (PD-1/PD-L1), leading to T cell anergy. Therefore, cancer immunotherapy with specific binding to these receptors has been developed to treat human cancers. Due to the lack of cross-reactivity of these antibodies in dogs, a specific canine PD-1/PD-L1 antibody is required. The aim of this study is to develop mouse anti-canine PD-L1 (cPD-L1) monoclonal antibodies and characterize their <i>in vitro</i> properties. Six mice were immunized with recombinant cPD-L1 with a fusion of human Fc tag. The hybridoma clones that successfully generated anti-cPD-L1 antibodies and had neutralizing activity were selected for monoclonal antibody production. Antibody properties were tested by immunosorbent assay, surface plasmon resonance, and immunohistochemistry. Four hybridomas were effectively bound and blocked to recombinant cPD-L1 and cPD-1-His-protein, respectively. Candidate mouse monoclonal antibodies worked efficiently on formalin-fixed paraffin-embedded tissues of canine cancers, including cutaneous T-cell lymphomas, mammary carcinomas, soft tissue sarcomas, squamous cell carcinomas, and malignant melanomas. However, functional assays of these anti-cPD-L1 antibodies need further investigation to prove their abilities as therapeutic drugs in dogs as well as their applications as prognostic markers.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2e/af/TVEQ_43_2240380.PMC10388796.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of mouse anti-canine PD-L1 monoclonal antibodies and their expression in canine tumors by immunohistochemistry <i>in vitro</i>.\",\"authors\":\"Sirintra Sirivisoot, Chatikorn Boonkrai, Tossapon Wongtangprasert, Tanapati Phakham, Phijitra Muanwein, Trairak Pisitkun, Chenphop Sawangmake, Araya Radtanakatikanon, Anudep Rungsipipat\",\"doi\":\"10.1080/01652176.2023.2240380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune escape is the hallmark of carcinogenesis. This widely known mechanism is the overexpression of immune checkpoint ligands, such as programmed cell death protein 1 and programmed death-ligand 1 (PD-1/PD-L1), leading to T cell anergy. Therefore, cancer immunotherapy with specific binding to these receptors has been developed to treat human cancers. Due to the lack of cross-reactivity of these antibodies in dogs, a specific canine PD-1/PD-L1 antibody is required. The aim of this study is to develop mouse anti-canine PD-L1 (cPD-L1) monoclonal antibodies and characterize their <i>in vitro</i> properties. Six mice were immunized with recombinant cPD-L1 with a fusion of human Fc tag. The hybridoma clones that successfully generated anti-cPD-L1 antibodies and had neutralizing activity were selected for monoclonal antibody production. Antibody properties were tested by immunosorbent assay, surface plasmon resonance, and immunohistochemistry. Four hybridomas were effectively bound and blocked to recombinant cPD-L1 and cPD-1-His-protein, respectively. Candidate mouse monoclonal antibodies worked efficiently on formalin-fixed paraffin-embedded tissues of canine cancers, including cutaneous T-cell lymphomas, mammary carcinomas, soft tissue sarcomas, squamous cell carcinomas, and malignant melanomas. However, functional assays of these anti-cPD-L1 antibodies need further investigation to prove their abilities as therapeutic drugs in dogs as well as their applications as prognostic markers.</p>\",\"PeriodicalId\":51207,\"journal\":{\"name\":\"Veterinary Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2e/af/TVEQ_43_2240380.PMC10388796.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Quarterly\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/01652176.2023.2240380\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Quarterly","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/01652176.2023.2240380","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Development and characterization of mouse anti-canine PD-L1 monoclonal antibodies and their expression in canine tumors by immunohistochemistry in vitro.
Immune escape is the hallmark of carcinogenesis. This widely known mechanism is the overexpression of immune checkpoint ligands, such as programmed cell death protein 1 and programmed death-ligand 1 (PD-1/PD-L1), leading to T cell anergy. Therefore, cancer immunotherapy with specific binding to these receptors has been developed to treat human cancers. Due to the lack of cross-reactivity of these antibodies in dogs, a specific canine PD-1/PD-L1 antibody is required. The aim of this study is to develop mouse anti-canine PD-L1 (cPD-L1) monoclonal antibodies and characterize their in vitro properties. Six mice were immunized with recombinant cPD-L1 with a fusion of human Fc tag. The hybridoma clones that successfully generated anti-cPD-L1 antibodies and had neutralizing activity were selected for monoclonal antibody production. Antibody properties were tested by immunosorbent assay, surface plasmon resonance, and immunohistochemistry. Four hybridomas were effectively bound and blocked to recombinant cPD-L1 and cPD-1-His-protein, respectively. Candidate mouse monoclonal antibodies worked efficiently on formalin-fixed paraffin-embedded tissues of canine cancers, including cutaneous T-cell lymphomas, mammary carcinomas, soft tissue sarcomas, squamous cell carcinomas, and malignant melanomas. However, functional assays of these anti-cPD-L1 antibodies need further investigation to prove their abilities as therapeutic drugs in dogs as well as their applications as prognostic markers.
期刊介绍:
Veterinary Quarterly is an international open access journal which publishes high quality review articles and original research in the field of veterinary science and animal diseases. The journal publishes research on a range of different animal species and topics including: - Economically important species such as domesticated and non-domesticated farm animals, including avian and poultry diseases; - Companion animals (dogs, cats, horses, pocket pets and exotics); - Wildlife species; - Infectious diseases; - Diagnosis; - Treatment including pharmacology and vaccination