{"title":"关于聚乙烯醇基水凝胶复合材料外周置入中心导管闭塞率的回顾性比较临床研究","authors":"Joseph Bunch, Brian Hanley, Daniel Donahue","doi":"10.1007/s10856-023-06736-0","DOIUrl":null,"url":null,"abstract":"<div><p>Thrombotic accumulation is associated with surface interactions between blood proteins and vascular access devices. Catheter occlusion results from this process, and is a costly, common, occurrence with peripherally inserted central catheters (PICCs). Hydrophilic catheter materials exhibit antithrombotic properties. This retrospective study evaluates the occurrence of catheter occlusion of PICCs constructed of a poly(vinyl alcohol)-based hydrogel composite known as hydrophilic biomaterial (HBM), compared to thermoplastic polyurethane (TPU) control devices. A total of 121 PICCs, 60 HBM and 61 TPU, were placed in patients with a clinical need and were reviewed for the occurrence of catheter occlusion. The records review found that occlusions occurred in 0/60 (0.0%) of the HBM PICCs and 13/61 (21.3%) of TPU PICCs (<i>p</i> = 0.001). HBM exhibits favorable qualities for vascular access, most importantly its extreme hydrophilicity. Clinically, this may be responsible for the reduction in PICC occlusions, which could improve patient outcomes.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 7","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361913/pdf/","citationCount":"0","resultStr":"{\"title\":\"A retrospective, comparative, clinical study of occlusion rate of peripherally inserted central catheters fabricated of poly(vinyl alcohol)-based hydrogel composite\",\"authors\":\"Joseph Bunch, Brian Hanley, Daniel Donahue\",\"doi\":\"10.1007/s10856-023-06736-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thrombotic accumulation is associated with surface interactions between blood proteins and vascular access devices. Catheter occlusion results from this process, and is a costly, common, occurrence with peripherally inserted central catheters (PICCs). Hydrophilic catheter materials exhibit antithrombotic properties. This retrospective study evaluates the occurrence of catheter occlusion of PICCs constructed of a poly(vinyl alcohol)-based hydrogel composite known as hydrophilic biomaterial (HBM), compared to thermoplastic polyurethane (TPU) control devices. A total of 121 PICCs, 60 HBM and 61 TPU, were placed in patients with a clinical need and were reviewed for the occurrence of catheter occlusion. The records review found that occlusions occurred in 0/60 (0.0%) of the HBM PICCs and 13/61 (21.3%) of TPU PICCs (<i>p</i> = 0.001). HBM exhibits favorable qualities for vascular access, most importantly its extreme hydrophilicity. Clinically, this may be responsible for the reduction in PICC occlusions, which could improve patient outcomes.</p><h3>Graphical Abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"34 7\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-023-06736-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-023-06736-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A retrospective, comparative, clinical study of occlusion rate of peripherally inserted central catheters fabricated of poly(vinyl alcohol)-based hydrogel composite
Thrombotic accumulation is associated with surface interactions between blood proteins and vascular access devices. Catheter occlusion results from this process, and is a costly, common, occurrence with peripherally inserted central catheters (PICCs). Hydrophilic catheter materials exhibit antithrombotic properties. This retrospective study evaluates the occurrence of catheter occlusion of PICCs constructed of a poly(vinyl alcohol)-based hydrogel composite known as hydrophilic biomaterial (HBM), compared to thermoplastic polyurethane (TPU) control devices. A total of 121 PICCs, 60 HBM and 61 TPU, were placed in patients with a clinical need and were reviewed for the occurrence of catheter occlusion. The records review found that occlusions occurred in 0/60 (0.0%) of the HBM PICCs and 13/61 (21.3%) of TPU PICCs (p = 0.001). HBM exhibits favorable qualities for vascular access, most importantly its extreme hydrophilicity. Clinically, this may be responsible for the reduction in PICC occlusions, which could improve patient outcomes.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.