Sarah Dohadwala, Joseph A Politch, Jessica H Barmine, Deborah J Anderson
{"title":"避孕多用途预防技术(cMPT)产品简史与进展。","authors":"Sarah Dohadwala, Joseph A Politch, Jessica H Barmine, Deborah J Anderson","doi":"10.2147/OAJC.S375634","DOIUrl":null,"url":null,"abstract":"<p><p>The high incidence of HIV and other sexually transmitted infections (STIs), and an unmet need for modern contraception resulting in a high unintended pregnancy rate, are major problems in reproductive health. The concept of multipurpose prevention technology (MPT) was introduced following the failure of several leading microbicide candidates to prevent human immunodeficiency virus type 1 (HIV-1) transmission in large clinical trials in the early 2000s. MPTs are defined as products designed to simultaneously prevent at least two of the following conditions: unintended pregnancy, HIV-1, or other major STIs. The goal of contraceptive MPT products (cMPTs) is to provide contraception and protection against one or more major STI pathogen (eg, HIV-1, herpes simplex virus (HSV) type 2, <i>Neisseria gonorrhoeae</i> (gonorrhea), <i>Treponema pallidum (</i>syphilis<i>), Trichomonas vaginalis, Chlamydia trachomatis</i> (Chlamydia). This new field has great potential and will benefit from lessons learned from the early microbicide trials. The cMPT field includes candidates representing various categories with different mechanisms of action including pH modifiers, polyions, microbicidal peptides, monoclonal antibodies, and other peptides that target specific reproductive and infectious processes. More preclinical research is being conducted to ensure minimal side effects and maximum efficacy in vivo. Effective proven and novel candidates are being combined to maximize efficacy, minimize side effects, and avoid drug resistance. More attention is being paid to acceptability and new delivery systems. cMPTs have a very promising future if adequate resources can be mobilized to sustain the effort from preclinical research to clinical trials to bring effective, acceptable, and affordable products to market.</p>","PeriodicalId":74348,"journal":{"name":"Open access journal of contraception","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/4d/oajc-14-83.PMC10276588.pdf","citationCount":"0","resultStr":"{\"title\":\"A Brief History and Advancement of Contraceptive Multipurpose Prevention Technology (cMPT) Products.\",\"authors\":\"Sarah Dohadwala, Joseph A Politch, Jessica H Barmine, Deborah J Anderson\",\"doi\":\"10.2147/OAJC.S375634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high incidence of HIV and other sexually transmitted infections (STIs), and an unmet need for modern contraception resulting in a high unintended pregnancy rate, are major problems in reproductive health. The concept of multipurpose prevention technology (MPT) was introduced following the failure of several leading microbicide candidates to prevent human immunodeficiency virus type 1 (HIV-1) transmission in large clinical trials in the early 2000s. MPTs are defined as products designed to simultaneously prevent at least two of the following conditions: unintended pregnancy, HIV-1, or other major STIs. The goal of contraceptive MPT products (cMPTs) is to provide contraception and protection against one or more major STI pathogen (eg, HIV-1, herpes simplex virus (HSV) type 2, <i>Neisseria gonorrhoeae</i> (gonorrhea), <i>Treponema pallidum (</i>syphilis<i>), Trichomonas vaginalis, Chlamydia trachomatis</i> (Chlamydia). This new field has great potential and will benefit from lessons learned from the early microbicide trials. The cMPT field includes candidates representing various categories with different mechanisms of action including pH modifiers, polyions, microbicidal peptides, monoclonal antibodies, and other peptides that target specific reproductive and infectious processes. More preclinical research is being conducted to ensure minimal side effects and maximum efficacy in vivo. Effective proven and novel candidates are being combined to maximize efficacy, minimize side effects, and avoid drug resistance. More attention is being paid to acceptability and new delivery systems. cMPTs have a very promising future if adequate resources can be mobilized to sustain the effort from preclinical research to clinical trials to bring effective, acceptable, and affordable products to market.</p>\",\"PeriodicalId\":74348,\"journal\":{\"name\":\"Open access journal of contraception\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/4d/oajc-14-83.PMC10276588.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open access journal of contraception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/OAJC.S375634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open access journal of contraception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OAJC.S375634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
A Brief History and Advancement of Contraceptive Multipurpose Prevention Technology (cMPT) Products.
The high incidence of HIV and other sexually transmitted infections (STIs), and an unmet need for modern contraception resulting in a high unintended pregnancy rate, are major problems in reproductive health. The concept of multipurpose prevention technology (MPT) was introduced following the failure of several leading microbicide candidates to prevent human immunodeficiency virus type 1 (HIV-1) transmission in large clinical trials in the early 2000s. MPTs are defined as products designed to simultaneously prevent at least two of the following conditions: unintended pregnancy, HIV-1, or other major STIs. The goal of contraceptive MPT products (cMPTs) is to provide contraception and protection against one or more major STI pathogen (eg, HIV-1, herpes simplex virus (HSV) type 2, Neisseria gonorrhoeae (gonorrhea), Treponema pallidum (syphilis), Trichomonas vaginalis, Chlamydia trachomatis (Chlamydia). This new field has great potential and will benefit from lessons learned from the early microbicide trials. The cMPT field includes candidates representing various categories with different mechanisms of action including pH modifiers, polyions, microbicidal peptides, monoclonal antibodies, and other peptides that target specific reproductive and infectious processes. More preclinical research is being conducted to ensure minimal side effects and maximum efficacy in vivo. Effective proven and novel candidates are being combined to maximize efficacy, minimize side effects, and avoid drug resistance. More attention is being paid to acceptability and new delivery systems. cMPTs have a very promising future if adequate resources can be mobilized to sustain the effort from preclinical research to clinical trials to bring effective, acceptable, and affordable products to market.