{"title":"开发用于预防表面伤口生物膜的绿色合成碳基纳米粒子","authors":"Miaolin Yang, Zhi Li","doi":"10.1007/s12010-023-04695-4","DOIUrl":null,"url":null,"abstract":"<div><p>The development of microbial biofilm occurs with the adherence of the microbial cells on biotic and abiotic surfaces with the help of pili and with extracellular polymeric substances. The surfaces on which biofilm formation take place can be inert, abiotic, or biotic. The sessile microbial cells behave differently from their planktonic counterpart. The biofilm developed by <i>Alcaligenes faecalis</i> is responsible for the development of skin and soft-tissue infection. It was observed that green-synthesized carbon nanoparticles (NPs) from <i>Ocimum sanctum</i> showed a prolonged stability and activity. It showed a marked reduction in the viability of sessile microbial species with least revival in comparison to the plant extract and amoxicillin. It was observed that carbon NP was able to maximally reduce the quorum sensing (QS) activity of <i>A. faecalis</i>. Thus, the use of green-synthesized NPs would be an alternative in the treatment of the biofilm-associated chronic wound infections.</p></div>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Green-Synthesized Carbon-Based Nanoparticle for Prevention of Surface Wound Biofilm\",\"authors\":\"Miaolin Yang, Zhi Li\",\"doi\":\"10.1007/s12010-023-04695-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of microbial biofilm occurs with the adherence of the microbial cells on biotic and abiotic surfaces with the help of pili and with extracellular polymeric substances. The surfaces on which biofilm formation take place can be inert, abiotic, or biotic. The sessile microbial cells behave differently from their planktonic counterpart. The biofilm developed by <i>Alcaligenes faecalis</i> is responsible for the development of skin and soft-tissue infection. It was observed that green-synthesized carbon nanoparticles (NPs) from <i>Ocimum sanctum</i> showed a prolonged stability and activity. It showed a marked reduction in the viability of sessile microbial species with least revival in comparison to the plant extract and amoxicillin. It was observed that carbon NP was able to maximally reduce the quorum sensing (QS) activity of <i>A. faecalis</i>. Thus, the use of green-synthesized NPs would be an alternative in the treatment of the biofilm-associated chronic wound infections.</p></div>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12010-023-04695-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12010-023-04695-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Development of Green-Synthesized Carbon-Based Nanoparticle for Prevention of Surface Wound Biofilm
The development of microbial biofilm occurs with the adherence of the microbial cells on biotic and abiotic surfaces with the help of pili and with extracellular polymeric substances. The surfaces on which biofilm formation take place can be inert, abiotic, or biotic. The sessile microbial cells behave differently from their planktonic counterpart. The biofilm developed by Alcaligenes faecalis is responsible for the development of skin and soft-tissue infection. It was observed that green-synthesized carbon nanoparticles (NPs) from Ocimum sanctum showed a prolonged stability and activity. It showed a marked reduction in the viability of sessile microbial species with least revival in comparison to the plant extract and amoxicillin. It was observed that carbon NP was able to maximally reduce the quorum sensing (QS) activity of A. faecalis. Thus, the use of green-synthesized NPs would be an alternative in the treatment of the biofilm-associated chronic wound infections.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.