在不对称脂质体中,内小叶阳离子脂质独立于外小叶脂质电荷增加核酸负载。

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Bingchen Li , Erwin London
{"title":"在不对称脂质体中,内小叶阳离子脂质独立于外小叶脂质电荷增加核酸负载。","authors":"Bingchen Li ,&nbsp;Erwin London","doi":"10.1016/j.ymeth.2023.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>Use of cationic lipid vesicles (liposomes) can yield large amounts of nucleic acid entrapped inside the vesicles and/or bound to the external surface of the vesicles. To show a method to prepare asymmetric lipid vesicles (liposomes) with high amounts of entrapped nucleic acid is possible, symmetric and asymmetric lipid vesicles composed of mixtures of neutral (zwitterionic), anionic, and/or cationic phospholipids were formed in the presence of oligo DNA. For symmetric large unilamellar vesicles nucleic acid association with vesicles was roughly 100 times greater for vesicles with a net cationic charge than for vesicles having a net neutral or anionic net charge. A high degree of association between nucleic acid and lipid was also achieved using asymmetric large unilamellar vesicles with a net cationic charge in their inner leaflet, even when they had an anionic charge in their outer leaflet. In contrast, asymmetric vesicles in which only the outer leaflet had a net cationic charge had only low amounts of vesicle-associated nucleic acid, similar in amount to the amount of nucleic acid associated with asymmetric vesicles with an outer leaflet having a net anionic charge. These results indicate that in asymmetric vesicles with cationic lipid enriched inner leaflets nucleic acid is largely entrapped inside the vesicle lumen rather than bound to their external surface, and that asymmetric vesicles can be used to trap high amounts of nucleic acid even when using a lipid composition in the outer leaflet of a lipid vesicle that does not associate with nucleic acids. Such asymmetrically charged vesicles should have applications in studies of membrane protein-nucleic acid interactions as well as in studies of how membrane charge asymmetry can influence membrane protein structure, orientation, and function.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"219 ","pages":"Pages 16-21"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inner leaflet cationic lipid increases nucleic acid loading independently of outer leaflet lipid charge in asymmetric liposomes\",\"authors\":\"Bingchen Li ,&nbsp;Erwin London\",\"doi\":\"10.1016/j.ymeth.2023.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Use of cationic lipid vesicles (liposomes) can yield large amounts of nucleic acid entrapped inside the vesicles and/or bound to the external surface of the vesicles. To show a method to prepare asymmetric lipid vesicles (liposomes) with high amounts of entrapped nucleic acid is possible, symmetric and asymmetric lipid vesicles composed of mixtures of neutral (zwitterionic), anionic, and/or cationic phospholipids were formed in the presence of oligo DNA. For symmetric large unilamellar vesicles nucleic acid association with vesicles was roughly 100 times greater for vesicles with a net cationic charge than for vesicles having a net neutral or anionic net charge. A high degree of association between nucleic acid and lipid was also achieved using asymmetric large unilamellar vesicles with a net cationic charge in their inner leaflet, even when they had an anionic charge in their outer leaflet. In contrast, asymmetric vesicles in which only the outer leaflet had a net cationic charge had only low amounts of vesicle-associated nucleic acid, similar in amount to the amount of nucleic acid associated with asymmetric vesicles with an outer leaflet having a net anionic charge. These results indicate that in asymmetric vesicles with cationic lipid enriched inner leaflets nucleic acid is largely entrapped inside the vesicle lumen rather than bound to their external surface, and that asymmetric vesicles can be used to trap high amounts of nucleic acid even when using a lipid composition in the outer leaflet of a lipid vesicle that does not associate with nucleic acids. Such asymmetrically charged vesicles should have applications in studies of membrane protein-nucleic acid interactions as well as in studies of how membrane charge asymmetry can influence membrane protein structure, orientation, and function.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"219 \",\"pages\":\"Pages 16-21\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202323001470\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202323001470","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

阳离子脂质囊泡(脂质体)的使用可以产生大量的核酸包埋在囊泡内部和/或结合到囊泡的外表面。为了证明用大量包埋的核酸制备不对称脂质囊泡(脂质体)的方法是可能的,在寡DNA存在下形成由中性(两性离子)、阴离子和/或阳离子磷脂的混合物组成的对称和不对称脂质囊袋。对于对称的大单层囊泡,具有净阳离子电荷的囊泡的核酸与囊泡的结合大约是具有净中性或阴离子净电荷的囊袋的100倍。使用在其内小叶中具有净阳离子电荷的不对称大单层囊泡,即使在其外小叶中具有阴离子电荷时,也实现了核酸和脂质之间的高度结合。相反,只有外小叶具有净阳离子电荷的不对称囊泡仅具有少量的囊泡相关核酸,其量与具有净阴离子电荷的外小叶的不对称囊袋相关的核酸量相似。这些结果表明,在具有阳离子脂质富集的内小叶的不对称囊泡中,核酸大部分被截留在囊泡腔内,而不是结合到其外表面,并且即使在脂质囊泡的外小叶中使用与核酸不相关的脂质组合物时,不对称囊泡也可以用于捕获大量核酸。这种带不对称电荷的囊泡应该应用于膜-蛋白质-核酸相互作用的研究,以及膜电荷不对称如何影响膜-蛋白质结构、取向和功能的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inner leaflet cationic lipid increases nucleic acid loading independently of outer leaflet lipid charge in asymmetric liposomes

Use of cationic lipid vesicles (liposomes) can yield large amounts of nucleic acid entrapped inside the vesicles and/or bound to the external surface of the vesicles. To show a method to prepare asymmetric lipid vesicles (liposomes) with high amounts of entrapped nucleic acid is possible, symmetric and asymmetric lipid vesicles composed of mixtures of neutral (zwitterionic), anionic, and/or cationic phospholipids were formed in the presence of oligo DNA. For symmetric large unilamellar vesicles nucleic acid association with vesicles was roughly 100 times greater for vesicles with a net cationic charge than for vesicles having a net neutral or anionic net charge. A high degree of association between nucleic acid and lipid was also achieved using asymmetric large unilamellar vesicles with a net cationic charge in their inner leaflet, even when they had an anionic charge in their outer leaflet. In contrast, asymmetric vesicles in which only the outer leaflet had a net cationic charge had only low amounts of vesicle-associated nucleic acid, similar in amount to the amount of nucleic acid associated with asymmetric vesicles with an outer leaflet having a net anionic charge. These results indicate that in asymmetric vesicles with cationic lipid enriched inner leaflets nucleic acid is largely entrapped inside the vesicle lumen rather than bound to their external surface, and that asymmetric vesicles can be used to trap high amounts of nucleic acid even when using a lipid composition in the outer leaflet of a lipid vesicle that does not associate with nucleic acids. Such asymmetrically charged vesicles should have applications in studies of membrane protein-nucleic acid interactions as well as in studies of how membrane charge asymmetry can influence membrane protein structure, orientation, and function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信