Carlos Chinchilla, Chris McDonough, Amanuel Negash, Jason Pagan, Alexey Tonyushkin
{"title":"无场线单面磁粉成像扫描仪二维投影图像重建:仿真研究。","authors":"Carlos Chinchilla, Chris McDonough, Amanuel Negash, Jason Pagan, Alexey Tonyushkin","doi":"10.18416/ijmpi.2021.2104001","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Particle Imaging is an imaging modality that exploits the nonlinear response of superparamagnetic iron oxide nanoparticles to a time-varying magnetic field. In the past years, various scanner topologies have been proposed, which includes a single-sided scanner. Such a scanner features all its hardware located on one side, offering accessibility without limitations due to the size of the object of interest. In this paper, we present a proof of concept image reconstruction simulation studies for a single-sided field-free line scanner utilizing non-uniform magnetic fields. Specifically, we implemented a filtered backprojection algorithm allowing a 2D image reconstruction over a field of view of 4 × 4 cm<sup>2</sup> with a spatial resolution of up to 2 mm for noiseless case.</p>","PeriodicalId":36734,"journal":{"name":"International Journal on Magnetic Particle Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360344/pdf/","citationCount":"1","resultStr":"{\"title\":\"2D projection image reconstruction for field free line single-sided magnetic particle imaging scanner: simulation studies.\",\"authors\":\"Carlos Chinchilla, Chris McDonough, Amanuel Negash, Jason Pagan, Alexey Tonyushkin\",\"doi\":\"10.18416/ijmpi.2021.2104001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic Particle Imaging is an imaging modality that exploits the nonlinear response of superparamagnetic iron oxide nanoparticles to a time-varying magnetic field. In the past years, various scanner topologies have been proposed, which includes a single-sided scanner. Such a scanner features all its hardware located on one side, offering accessibility without limitations due to the size of the object of interest. In this paper, we present a proof of concept image reconstruction simulation studies for a single-sided field-free line scanner utilizing non-uniform magnetic fields. Specifically, we implemented a filtered backprojection algorithm allowing a 2D image reconstruction over a field of view of 4 × 4 cm<sup>2</sup> with a spatial resolution of up to 2 mm for noiseless case.</p>\",\"PeriodicalId\":36734,\"journal\":{\"name\":\"International Journal on Magnetic Particle Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360344/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Magnetic Particle Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18416/ijmpi.2021.2104001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Magnetic Particle Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18416/ijmpi.2021.2104001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
2D projection image reconstruction for field free line single-sided magnetic particle imaging scanner: simulation studies.
Magnetic Particle Imaging is an imaging modality that exploits the nonlinear response of superparamagnetic iron oxide nanoparticles to a time-varying magnetic field. In the past years, various scanner topologies have been proposed, which includes a single-sided scanner. Such a scanner features all its hardware located on one side, offering accessibility without limitations due to the size of the object of interest. In this paper, we present a proof of concept image reconstruction simulation studies for a single-sided field-free line scanner utilizing non-uniform magnetic fields. Specifically, we implemented a filtered backprojection algorithm allowing a 2D image reconstruction over a field of view of 4 × 4 cm2 with a spatial resolution of up to 2 mm for noiseless case.