Nathaniel L. Lartey, Martijn van der Ent, Roxann Alonzo, Di Chen, Philip D. King
{"title":"利用新型基因敲除 Col4a1-P2A-eGFP 小鼠品系确定胚胎发育过程中内皮细胞胶原蛋白 4α1 表达的时间限制模式","authors":"Nathaniel L. Lartey, Martijn van der Ent, Roxann Alonzo, Di Chen, Philip D. King","doi":"10.1002/dvg.23539","DOIUrl":null,"url":null,"abstract":"<p>Classical collagen type IV comprising of a heterotrimer of two collagen IV alpha 1 chains and one collagen IV alpha 2 chain is the principal type of collagen synthesized by endothelial cells (EC) and is a major constituent of vascular basement membranes. In mouse and man, mutations in genes that encode collagen IV alpha 1 and alpha 2 result in vascular dysfunction. In addition, mutations in genes that encode the Ephrin receptor B4 (EPHB4) and the p120 Ras GTPase-activating protein (RASA1) that cause increased activation of the Ras mitogen-activated protein kinase (MAPK) signaling pathway in EC result in vascular dysfunction as a consequence of impaired export of collagen IV. To understand the pathogenesis of collagen IV-related vascular diseases and phenotypes it is necessary to identify at which times collagen IV is actively synthesized by EC. For this purpose, we used CRISPR/Cas9 targeting in mice to include immediately after the terminal <i>Col4a1</i> codon a sequence that specifies a P2A peptide followed by enhanced green fluorescent protein (eGFP). Analysis of eGFP expression in <i>Col4a1-P2A-eGFP</i> mice revealed active embryonic EC synthesis of collagen IV alpha 1 through mid to late gestation followed by a sharp decline before birth. These results provide a contextual framework for understanding the basis for the varied vascular abnormalities resulting from perturbation of EC expression and export of functional collagen IV.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23539","citationCount":"0","resultStr":"{\"title\":\"A temporally-restricted pattern of endothelial cell collagen 4 alpha 1 expression during embryonic development determined with a novel knockin Col4a1-P2A-eGFP mouse line\",\"authors\":\"Nathaniel L. Lartey, Martijn van der Ent, Roxann Alonzo, Di Chen, Philip D. King\",\"doi\":\"10.1002/dvg.23539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Classical collagen type IV comprising of a heterotrimer of two collagen IV alpha 1 chains and one collagen IV alpha 2 chain is the principal type of collagen synthesized by endothelial cells (EC) and is a major constituent of vascular basement membranes. In mouse and man, mutations in genes that encode collagen IV alpha 1 and alpha 2 result in vascular dysfunction. In addition, mutations in genes that encode the Ephrin receptor B4 (EPHB4) and the p120 Ras GTPase-activating protein (RASA1) that cause increased activation of the Ras mitogen-activated protein kinase (MAPK) signaling pathway in EC result in vascular dysfunction as a consequence of impaired export of collagen IV. To understand the pathogenesis of collagen IV-related vascular diseases and phenotypes it is necessary to identify at which times collagen IV is actively synthesized by EC. For this purpose, we used CRISPR/Cas9 targeting in mice to include immediately after the terminal <i>Col4a1</i> codon a sequence that specifies a P2A peptide followed by enhanced green fluorescent protein (eGFP). Analysis of eGFP expression in <i>Col4a1-P2A-eGFP</i> mice revealed active embryonic EC synthesis of collagen IV alpha 1 through mid to late gestation followed by a sharp decline before birth. These results provide a contextual framework for understanding the basis for the varied vascular abnormalities resulting from perturbation of EC expression and export of functional collagen IV.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23539\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A temporally-restricted pattern of endothelial cell collagen 4 alpha 1 expression during embryonic development determined with a novel knockin Col4a1-P2A-eGFP mouse line
Classical collagen type IV comprising of a heterotrimer of two collagen IV alpha 1 chains and one collagen IV alpha 2 chain is the principal type of collagen synthesized by endothelial cells (EC) and is a major constituent of vascular basement membranes. In mouse and man, mutations in genes that encode collagen IV alpha 1 and alpha 2 result in vascular dysfunction. In addition, mutations in genes that encode the Ephrin receptor B4 (EPHB4) and the p120 Ras GTPase-activating protein (RASA1) that cause increased activation of the Ras mitogen-activated protein kinase (MAPK) signaling pathway in EC result in vascular dysfunction as a consequence of impaired export of collagen IV. To understand the pathogenesis of collagen IV-related vascular diseases and phenotypes it is necessary to identify at which times collagen IV is actively synthesized by EC. For this purpose, we used CRISPR/Cas9 targeting in mice to include immediately after the terminal Col4a1 codon a sequence that specifies a P2A peptide followed by enhanced green fluorescent protein (eGFP). Analysis of eGFP expression in Col4a1-P2A-eGFP mice revealed active embryonic EC synthesis of collagen IV alpha 1 through mid to late gestation followed by a sharp decline before birth. These results provide a contextual framework for understanding the basis for the varied vascular abnormalities resulting from perturbation of EC expression and export of functional collagen IV.