Alex M Brown, Jill Blind, Katie Campbell, Sumit Ghosh
{"title":"在人类基因治疗中使用病毒载体系统的保障措施:生物安全专业人员在卫生保健环境中降低风险的资源。","authors":"Alex M Brown, Jill Blind, Katie Campbell, Sumit Ghosh","doi":"10.1177/1535676020934917","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Health care workers who work daily with human body fluids and hazardous drugs are among those at the highest risk of occupational exposure to these agents. The Occupational Safety and Health Administration's (OSHA) Bloodborne Pathogens Standard (29 CFR 1910.1030) prescribes safeguards to protect workers against health hazards related to bloodborne pathogens. Similarly, the United States Pharmacopeia General Chapter 800 (USP <800>), a standard first published in February 2016 and implementation required by December 2019, addresses the occupational exposure risks of health care workers at organizations working with hazardous drugs. With emerging technologies in the field of gene therapy, these occupational exposure risks to health care workers now extend beyond those associated with bloodborne pathogens and hazardous drugs and now include recombinant DNA. The fifth edition of the <i>Biosafety in Microbiological and Biomedical Laboratories</i> (<i>BMBL</i>) and the National Institutes of Health Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) mostly govern work with biohazardous agents and recombinant DNA in a laboratory research setting. When gene therapy products are utilized in a hospital environment, health care workers have very few resources to identify and reduce the risks associated with product use during and after the administration of treatments.</p><p><strong>Methods: </strong>At the Abigail Wexner Research Institute at Nationwide Children's Hospital, a comprehensive gap analysis was executed between the research and health care environment to develop a program for risk mitigation. The <i>BMBL</i>, NIH Guidelines, World Health Organization Biosafety Manual, OSHA Bloodborne Pathogens Standard, and USP <800> were used to develop a framework for the gap analysis process.</p><p><strong>Results: </strong>The standards and guidelines for working with viral vector systems in a research laboratory environment were adapted to develop a program that will mitigate the risks to health care workers involved in the preparation, transportation, and administration of gene therapies as well as subsequent patient care activities. The gap analysis identified significant differences in technical language used in daily operations, work environment, training and education, disinfection practices, and policy development between research and health care settings. These differences informed decisions and helped the organization develop a collaborative framework for risk mitigation when a gene therapy product enters the health care setting.</p><p><strong>Discussion: </strong>With continuing advances in the field of gene therapy, the oversight structure needs to evolve for the health care setting. To deliver the best outcomes to the patients of these therapies, researchers, Institutional Biosafety Committees, and health care workers need to collaborate on training programs to safeguard the public trust in the use of this technology both in clinical trials and as FDA-approved therapeutics.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"25 4","pages":"184-193"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1535676020934917","citationCount":"3","resultStr":"{\"title\":\"Safeguards for Using Viral Vector Systems in Human Gene Therapy: A Resource for Biosafety Professionals Mitigating Risks in Health Care Settings.\",\"authors\":\"Alex M Brown, Jill Blind, Katie Campbell, Sumit Ghosh\",\"doi\":\"10.1177/1535676020934917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Health care workers who work daily with human body fluids and hazardous drugs are among those at the highest risk of occupational exposure to these agents. The Occupational Safety and Health Administration's (OSHA) Bloodborne Pathogens Standard (29 CFR 1910.1030) prescribes safeguards to protect workers against health hazards related to bloodborne pathogens. Similarly, the United States Pharmacopeia General Chapter 800 (USP <800>), a standard first published in February 2016 and implementation required by December 2019, addresses the occupational exposure risks of health care workers at organizations working with hazardous drugs. With emerging technologies in the field of gene therapy, these occupational exposure risks to health care workers now extend beyond those associated with bloodborne pathogens and hazardous drugs and now include recombinant DNA. The fifth edition of the <i>Biosafety in Microbiological and Biomedical Laboratories</i> (<i>BMBL</i>) and the National Institutes of Health Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) mostly govern work with biohazardous agents and recombinant DNA in a laboratory research setting. When gene therapy products are utilized in a hospital environment, health care workers have very few resources to identify and reduce the risks associated with product use during and after the administration of treatments.</p><p><strong>Methods: </strong>At the Abigail Wexner Research Institute at Nationwide Children's Hospital, a comprehensive gap analysis was executed between the research and health care environment to develop a program for risk mitigation. The <i>BMBL</i>, NIH Guidelines, World Health Organization Biosafety Manual, OSHA Bloodborne Pathogens Standard, and USP <800> were used to develop a framework for the gap analysis process.</p><p><strong>Results: </strong>The standards and guidelines for working with viral vector systems in a research laboratory environment were adapted to develop a program that will mitigate the risks to health care workers involved in the preparation, transportation, and administration of gene therapies as well as subsequent patient care activities. The gap analysis identified significant differences in technical language used in daily operations, work environment, training and education, disinfection practices, and policy development between research and health care settings. These differences informed decisions and helped the organization develop a collaborative framework for risk mitigation when a gene therapy product enters the health care setting.</p><p><strong>Discussion: </strong>With continuing advances in the field of gene therapy, the oversight structure needs to evolve for the health care setting. To deliver the best outcomes to the patients of these therapies, researchers, Institutional Biosafety Committees, and health care workers need to collaborate on training programs to safeguard the public trust in the use of this technology both in clinical trials and as FDA-approved therapeutics.</p>\",\"PeriodicalId\":7962,\"journal\":{\"name\":\"Applied Biosafety\",\"volume\":\"25 4\",\"pages\":\"184-193\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1535676020934917\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biosafety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1535676020934917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biosafety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1535676020934917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Safeguards for Using Viral Vector Systems in Human Gene Therapy: A Resource for Biosafety Professionals Mitigating Risks in Health Care Settings.
Introduction: Health care workers who work daily with human body fluids and hazardous drugs are among those at the highest risk of occupational exposure to these agents. The Occupational Safety and Health Administration's (OSHA) Bloodborne Pathogens Standard (29 CFR 1910.1030) prescribes safeguards to protect workers against health hazards related to bloodborne pathogens. Similarly, the United States Pharmacopeia General Chapter 800 (USP <800>), a standard first published in February 2016 and implementation required by December 2019, addresses the occupational exposure risks of health care workers at organizations working with hazardous drugs. With emerging technologies in the field of gene therapy, these occupational exposure risks to health care workers now extend beyond those associated with bloodborne pathogens and hazardous drugs and now include recombinant DNA. The fifth edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) and the National Institutes of Health Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) mostly govern work with biohazardous agents and recombinant DNA in a laboratory research setting. When gene therapy products are utilized in a hospital environment, health care workers have very few resources to identify and reduce the risks associated with product use during and after the administration of treatments.
Methods: At the Abigail Wexner Research Institute at Nationwide Children's Hospital, a comprehensive gap analysis was executed between the research and health care environment to develop a program for risk mitigation. The BMBL, NIH Guidelines, World Health Organization Biosafety Manual, OSHA Bloodborne Pathogens Standard, and USP <800> were used to develop a framework for the gap analysis process.
Results: The standards and guidelines for working with viral vector systems in a research laboratory environment were adapted to develop a program that will mitigate the risks to health care workers involved in the preparation, transportation, and administration of gene therapies as well as subsequent patient care activities. The gap analysis identified significant differences in technical language used in daily operations, work environment, training and education, disinfection practices, and policy development between research and health care settings. These differences informed decisions and helped the organization develop a collaborative framework for risk mitigation when a gene therapy product enters the health care setting.
Discussion: With continuing advances in the field of gene therapy, the oversight structure needs to evolve for the health care setting. To deliver the best outcomes to the patients of these therapies, researchers, Institutional Biosafety Committees, and health care workers need to collaborate on training programs to safeguard the public trust in the use of this technology both in clinical trials and as FDA-approved therapeutics.
Applied BiosafetyEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
2.50
自引率
13.30%
发文量
27
期刊介绍:
Applied Biosafety (APB), sponsored by ABSA International, is a peer-reviewed, scientific journal committed to promoting global biosafety awareness and best practices to prevent occupational exposures and adverse environmental impacts related to biohazardous releases. APB provides a forum for exchanging sound biosafety and biosecurity initiatives by publishing original articles, review articles, letters to the editors, commentaries, and brief reviews. APB informs scientists, safety professionals, policymakers, engineers, architects, and governmental organizations. The journal is committed to publishing on topics significant in well-resourced countries as well as information relevant to underserved regions, engaging and cultivating the development of biosafety professionals globally.