局灶性粘连处的两个瞬时受体电位通道。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-09-01 Epub Date: 2023-08-18 DOI:10.1369/00221554231194119
Ioli Mitsou, Cathrine Rein Carlson, Hinke A B Multhaupt, Cord Brakebusch, John R Couchman
{"title":"局灶性粘连处的两个瞬时受体电位通道。","authors":"Ioli Mitsou, Cathrine Rein Carlson, Hinke A B Multhaupt, Cord Brakebusch, John R Couchman","doi":"10.1369/00221554231194119","DOIUrl":null,"url":null,"abstract":"<p><p>Recently there have been reports that identify two transient receptor potential channels in cell-matrix junctions known as focal adhesions. These are the calcium channel TRP canonical 7 and the calcium-activated monovalent ion channel, TRP melastatin (TRPM) 4. Here, we report on the occurrence of TRPM4 in focal adhesions of fibroblasts. Of three commercial antibodies recognizing this channel, only one yielded focal adhesion staining, while the other two did not. The epitope recognized by the focal adhesion-localizing antibody was mapped to the extreme C-terminus of the TRPM4 protein. The other two antibodies bind to N-terminal regions of the TRPM4 proteins. Deletion of the <i>TRPM4</i> gene by CRISPR/cas9 techniques confirmed that this channel is a <i>bona fide</i> focal adhesion component, while expression of full-length TRPM4 proteins suggested that processing may occur to yield a form that localizes to focal adhesions. Given the reports that this channel may influence migratory behavior of cells and is linked to cardiovascular disease, TRPM4 functions in adhesion should be explored in greater depth. (J Histochem Cytochem 71: 495-508, 2023).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two Transient Receptor Potential Channels at Focal Adhesions.\",\"authors\":\"Ioli Mitsou, Cathrine Rein Carlson, Hinke A B Multhaupt, Cord Brakebusch, John R Couchman\",\"doi\":\"10.1369/00221554231194119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently there have been reports that identify two transient receptor potential channels in cell-matrix junctions known as focal adhesions. These are the calcium channel TRP canonical 7 and the calcium-activated monovalent ion channel, TRP melastatin (TRPM) 4. Here, we report on the occurrence of TRPM4 in focal adhesions of fibroblasts. Of three commercial antibodies recognizing this channel, only one yielded focal adhesion staining, while the other two did not. The epitope recognized by the focal adhesion-localizing antibody was mapped to the extreme C-terminus of the TRPM4 protein. The other two antibodies bind to N-terminal regions of the TRPM4 proteins. Deletion of the <i>TRPM4</i> gene by CRISPR/cas9 techniques confirmed that this channel is a <i>bona fide</i> focal adhesion component, while expression of full-length TRPM4 proteins suggested that processing may occur to yield a form that localizes to focal adhesions. Given the reports that this channel may influence migratory behavior of cells and is linked to cardiovascular disease, TRPM4 functions in adhesion should be explored in greater depth. (J Histochem Cytochem 71: 495-508, 2023).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1369/00221554231194119\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554231194119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近有报道称,在细胞基质连接中发现了两种称为局灶性粘连的瞬时受体电位通道。这些是钙通道TRP规范7和钙活化的单价离子通道TRP美司他丁(TRPM)4。在此,我们报道了TRPM4在成纤维细胞局灶性粘连中的发生。在识别该通道的三种商业抗体中,只有一种产生了局灶性粘附染色,而其他两种没有。粘附定位抗体识别的表位被定位到TRPM4蛋白的末端C末端。另外两种抗体与TRPM4蛋白的N-末端区域结合。CRISPR/cas9技术对TRPM4基因的缺失证实了该通道是真正的局灶性粘附成分,而全长TRPM4蛋白的表达表明,可能发生加工以产生定位于局灶性粘连的形式。鉴于有报道称该通道可能影响细胞的迁移行为,并与心血管疾病有关,TRPM4在粘附中的功能应得到更深入的探索。(J Histochem Cytochem 71:495-5082023)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Transient Receptor Potential Channels at Focal Adhesions.

Recently there have been reports that identify two transient receptor potential channels in cell-matrix junctions known as focal adhesions. These are the calcium channel TRP canonical 7 and the calcium-activated monovalent ion channel, TRP melastatin (TRPM) 4. Here, we report on the occurrence of TRPM4 in focal adhesions of fibroblasts. Of three commercial antibodies recognizing this channel, only one yielded focal adhesion staining, while the other two did not. The epitope recognized by the focal adhesion-localizing antibody was mapped to the extreme C-terminus of the TRPM4 protein. The other two antibodies bind to N-terminal regions of the TRPM4 proteins. Deletion of the TRPM4 gene by CRISPR/cas9 techniques confirmed that this channel is a bona fide focal adhesion component, while expression of full-length TRPM4 proteins suggested that processing may occur to yield a form that localizes to focal adhesions. Given the reports that this channel may influence migratory behavior of cells and is linked to cardiovascular disease, TRPM4 functions in adhesion should be explored in greater depth. (J Histochem Cytochem 71: 495-508, 2023).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信