使用雷公藤甲素负载的nrr功能化脂质体调节肿瘤血管正常化,以增强癌症放疗。

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ying-Ying Xu, Yan-Hong Chen, Jie Jin, Yuan Yuan, Jin-Meng Li, Xin-Jun Cai, Ruo-Ying Zhang
{"title":"使用雷公藤甲素负载的nrr功能化脂质体调节肿瘤血管正常化,以增强癌症放疗。","authors":"Ying-Ying Xu,&nbsp;Yan-Hong Chen,&nbsp;Jie Jin,&nbsp;Yuan Yuan,&nbsp;Jin-Meng Li,&nbsp;Xin-Jun Cai,&nbsp;Ruo-Ying Zhang","doi":"10.1080/08982104.2022.2161095","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy is an effective therapy in tumour treatment. However, the characteristics of the tumour microenvironment, including hypoxia, low pH, and interstitial fluid pressure bring about radioresistance. To improve the anti-tumour effect of radiotherapy, it has been demonstrated that antiangiogenic therapy can be employed to repair the structural and functional defects of tumour angiogenic vessels, thereby preventing radioresistance or poor therapeutic drug delivery. In this study, we prepared triptolide (TP)-loaded Asn-Gly-Arg (NGR) peptide conjugated mPEG2000-DSPE-targeted liposomes (NGR-PEG-TP-LPs) to induce tumour blood vessel normalisation, to the end of increasing the sensitivity of tumour cells to radiotherapy. Further, to quantify the tumour vessel normalisation window, the structure and functionality of tumour blood vessels post NGR-PEG-TP-LPs treatment were evaluated. Thereafter, the anti-tumour effect of radiotherapy following these treatments was evaluated using HCT116 xenograft-bearing mouse models based on the tumour vessel normalisation period window. The results obtained showed that NGR-PEG-TP-LPs could modulate tumour vascular normalisation to increase the oxygen content of the tumour microenvironment and enhance the efficacy of radiotherapy. Further, liver and kidney toxicity tests indicated that NGR-PEG-TP-LPs are safe for application in cancer treatment.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating tumour vascular normalisation using triptolide-loaded NGR-functionalized liposomes for enhanced cancer radiotherapy.\",\"authors\":\"Ying-Ying Xu,&nbsp;Yan-Hong Chen,&nbsp;Jie Jin,&nbsp;Yuan Yuan,&nbsp;Jin-Meng Li,&nbsp;Xin-Jun Cai,&nbsp;Ruo-Ying Zhang\",\"doi\":\"10.1080/08982104.2022.2161095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiotherapy is an effective therapy in tumour treatment. However, the characteristics of the tumour microenvironment, including hypoxia, low pH, and interstitial fluid pressure bring about radioresistance. To improve the anti-tumour effect of radiotherapy, it has been demonstrated that antiangiogenic therapy can be employed to repair the structural and functional defects of tumour angiogenic vessels, thereby preventing radioresistance or poor therapeutic drug delivery. In this study, we prepared triptolide (TP)-loaded Asn-Gly-Arg (NGR) peptide conjugated mPEG2000-DSPE-targeted liposomes (NGR-PEG-TP-LPs) to induce tumour blood vessel normalisation, to the end of increasing the sensitivity of tumour cells to radiotherapy. Further, to quantify the tumour vessel normalisation window, the structure and functionality of tumour blood vessels post NGR-PEG-TP-LPs treatment were evaluated. Thereafter, the anti-tumour effect of radiotherapy following these treatments was evaluated using HCT116 xenograft-bearing mouse models based on the tumour vessel normalisation period window. The results obtained showed that NGR-PEG-TP-LPs could modulate tumour vascular normalisation to increase the oxygen content of the tumour microenvironment and enhance the efficacy of radiotherapy. Further, liver and kidney toxicity tests indicated that NGR-PEG-TP-LPs are safe for application in cancer treatment.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2022.2161095\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2022.2161095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

放射治疗是治疗肿瘤的一种有效方法。然而,肿瘤微环境的特点,包括缺氧、低pH和间质液压力,导致了放射抵抗。为了提高放疗的抗肿瘤效果,研究表明,抗血管生成治疗可用于修复肿瘤血管生成的结构和功能缺陷,从而防止放射耐药或治疗药物递送不良。在本研究中,我们制备了雷公藤甲素(TP)负载的asn - gy - arg (NGR)肽偶联的mpeg2000 - dspe靶向脂质体(NGR- peg -TP- lps)来诱导肿瘤血管正常化,以提高肿瘤细胞对放疗的敏感性。此外,为了量化肿瘤血管正常化窗口,评估了NGR-PEG-TP-LPs治疗后肿瘤血管的结构和功能。然后,基于肿瘤血管正常化周期窗口,使用HCT116异种移植小鼠模型评估这些治疗后放射治疗的抗肿瘤效果。结果表明,NGR-PEG-TP-LPs可调节肿瘤血管正常化,增加肿瘤微环境氧含量,提高放疗效果。此外,肝脏和肾脏毒性试验表明,NGR-PEG-TP-LPs在癌症治疗中的应用是安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating tumour vascular normalisation using triptolide-loaded NGR-functionalized liposomes for enhanced cancer radiotherapy.

Radiotherapy is an effective therapy in tumour treatment. However, the characteristics of the tumour microenvironment, including hypoxia, low pH, and interstitial fluid pressure bring about radioresistance. To improve the anti-tumour effect of radiotherapy, it has been demonstrated that antiangiogenic therapy can be employed to repair the structural and functional defects of tumour angiogenic vessels, thereby preventing radioresistance or poor therapeutic drug delivery. In this study, we prepared triptolide (TP)-loaded Asn-Gly-Arg (NGR) peptide conjugated mPEG2000-DSPE-targeted liposomes (NGR-PEG-TP-LPs) to induce tumour blood vessel normalisation, to the end of increasing the sensitivity of tumour cells to radiotherapy. Further, to quantify the tumour vessel normalisation window, the structure and functionality of tumour blood vessels post NGR-PEG-TP-LPs treatment were evaluated. Thereafter, the anti-tumour effect of radiotherapy following these treatments was evaluated using HCT116 xenograft-bearing mouse models based on the tumour vessel normalisation period window. The results obtained showed that NGR-PEG-TP-LPs could modulate tumour vascular normalisation to increase the oxygen content of the tumour microenvironment and enhance the efficacy of radiotherapy. Further, liver and kidney toxicity tests indicated that NGR-PEG-TP-LPs are safe for application in cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信