{"title":"Suchey-Brooks 年龄估计方法在印度人口中的适用性:利用贝叶斯分析和机器学习进行的基于计算机断层扫描的探索。","authors":"Varsha Warrier, Rutwik Shedge, Pawan Kumar Garg, Shilpi Gupta Dixit, Kewal Krishan, Tanuj Kanchan","doi":"10.1177/00258024231188799","DOIUrl":null,"url":null,"abstract":"<p><p>Age estimation occupies a prominent niche in the identification process. In cases where skeletal remains present for examination, age is often estimated from markers distributed throughout the skeletal framework. Within the pelvis, the pubic symphysis constitutes one of the more commonly utilized skeletal markers for age estimation, with the Suchey-Brooks method comprising one of the more commonly employed methods for pubic symphyseal age estimation. The present study was targeted towards assessing the applicability of the Suchey-Brooks method for pubic symphyseal age estimation, an aspect largely unreported for an Indian population. In order to do so, clinically undertaken pelvic computed tomography scans of individuals were evaluated using the Suchey-Brooks method, and the error associated with the method was established using Bayesian analysis and different machine learning regression models. Amongst different supervised machine learning models, support vector regression and random forest furnished lowest error computations in both sexes. Using both Bayesian analysis and machine learning, lower error computations were observed in females, suggesting that the method demonstrates greater applicability for this sex. Inaccuracy and root mean square error obtained with Bayesian analysis and machine learning illustrates that both statistical modalities furnish comparable error computations for pubic symphyseal age estimation using the Suchey-Brooks method. However, given the numerous advantages associated with machine learning, it is recommended to use the same within medicolegal settings. Error computations obtained with the Suchey-Brooks method, regardless of the statistical modality utilized, indicate that the method should be used in amalgamation with additional markers to garner accurate estimates of age.</p>","PeriodicalId":18484,"journal":{"name":"Medicine, Science and the Law","volume":" ","pages":"126-137"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applicability of the Suchey-Brooks method for age estimation in an Indian population: A computed tomography-based exploration using Bayesian analysis and machine learning.\",\"authors\":\"Varsha Warrier, Rutwik Shedge, Pawan Kumar Garg, Shilpi Gupta Dixit, Kewal Krishan, Tanuj Kanchan\",\"doi\":\"10.1177/00258024231188799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age estimation occupies a prominent niche in the identification process. In cases where skeletal remains present for examination, age is often estimated from markers distributed throughout the skeletal framework. Within the pelvis, the pubic symphysis constitutes one of the more commonly utilized skeletal markers for age estimation, with the Suchey-Brooks method comprising one of the more commonly employed methods for pubic symphyseal age estimation. The present study was targeted towards assessing the applicability of the Suchey-Brooks method for pubic symphyseal age estimation, an aspect largely unreported for an Indian population. In order to do so, clinically undertaken pelvic computed tomography scans of individuals were evaluated using the Suchey-Brooks method, and the error associated with the method was established using Bayesian analysis and different machine learning regression models. Amongst different supervised machine learning models, support vector regression and random forest furnished lowest error computations in both sexes. Using both Bayesian analysis and machine learning, lower error computations were observed in females, suggesting that the method demonstrates greater applicability for this sex. Inaccuracy and root mean square error obtained with Bayesian analysis and machine learning illustrates that both statistical modalities furnish comparable error computations for pubic symphyseal age estimation using the Suchey-Brooks method. However, given the numerous advantages associated with machine learning, it is recommended to use the same within medicolegal settings. Error computations obtained with the Suchey-Brooks method, regardless of the statistical modality utilized, indicate that the method should be used in amalgamation with additional markers to garner accurate estimates of age.</p>\",\"PeriodicalId\":18484,\"journal\":{\"name\":\"Medicine, Science and the Law\",\"volume\":\" \",\"pages\":\"126-137\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine, Science and the Law\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00258024231188799\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"LAW\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine, Science and the Law","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00258024231188799","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"LAW","Score":null,"Total":0}
Applicability of the Suchey-Brooks method for age estimation in an Indian population: A computed tomography-based exploration using Bayesian analysis and machine learning.
Age estimation occupies a prominent niche in the identification process. In cases where skeletal remains present for examination, age is often estimated from markers distributed throughout the skeletal framework. Within the pelvis, the pubic symphysis constitutes one of the more commonly utilized skeletal markers for age estimation, with the Suchey-Brooks method comprising one of the more commonly employed methods for pubic symphyseal age estimation. The present study was targeted towards assessing the applicability of the Suchey-Brooks method for pubic symphyseal age estimation, an aspect largely unreported for an Indian population. In order to do so, clinically undertaken pelvic computed tomography scans of individuals were evaluated using the Suchey-Brooks method, and the error associated with the method was established using Bayesian analysis and different machine learning regression models. Amongst different supervised machine learning models, support vector regression and random forest furnished lowest error computations in both sexes. Using both Bayesian analysis and machine learning, lower error computations were observed in females, suggesting that the method demonstrates greater applicability for this sex. Inaccuracy and root mean square error obtained with Bayesian analysis and machine learning illustrates that both statistical modalities furnish comparable error computations for pubic symphyseal age estimation using the Suchey-Brooks method. However, given the numerous advantages associated with machine learning, it is recommended to use the same within medicolegal settings. Error computations obtained with the Suchey-Brooks method, regardless of the statistical modality utilized, indicate that the method should be used in amalgamation with additional markers to garner accurate estimates of age.
期刊介绍:
Medicine, Science and the Law is the official journal of the British Academy for Forensic Sciences (BAFS). It is a peer reviewed journal dedicated to advancing the knowledge of forensic science and medicine. The journal aims to inform its readers from a broad perspective and demonstrate the interrelated nature and scope of the forensic disciplines. Through a variety of authoritative research articles submitted from across the globe, it covers a range of topical medico-legal issues. The journal keeps its readers informed of developments and trends through reporting, discussing and debating current issues of importance in forensic practice.