在大肠杆菌中,磷酸盐饥饿伴随着细胞内半胱氨酸稳态的紊乱。

IF 2.5 4区 生物学 Q3 MICROBIOLOGY
Galina V. Smirnova, Aleksey V. Tyulenev, Kseniya V. Bezmaternykh, Nadezda G. Muzyka, Vadim Y. Ushakov, Oleg N. Oktyabrsky
{"title":"在大肠杆菌中,磷酸盐饥饿伴随着细胞内半胱氨酸稳态的紊乱。","authors":"Galina V. Smirnova,&nbsp;Aleksey V. Tyulenev,&nbsp;Kseniya V. Bezmaternykh,&nbsp;Nadezda G. Muzyka,&nbsp;Vadim Y. Ushakov,&nbsp;Oleg N. Oktyabrsky","doi":"10.1016/j.resmic.2023.104108","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolic rearrangements that occur during depletion of essential nutrients can lead to accumulation of potentially dangerous metabolites. Here we showed that depletion of phosphate (P<sub>i</sub><span>), accompanied by a sharp inhibition of growth and respiration, caused a transient excess of intracellular cysteine due to a decrease in the rate of protein synthesis. High cysteine level can be dangerous due to its ability to produce ROS and reduce Fe</span><sup>3+</sup> to Fenton-reactive Fe<sup>2+</sup>. To prevent these negative effects, excess cysteine was mainly incorporated into glutathione (GSH), the intracellular level of which increased by 3 times, and was also exported to the medium and partially degraded to form H<sub>2</sub>S with participation of 3-mercaptopyruvate sulfotransferase (3MST). The addition of P<sub>i</sub> to starving cells led to a sharp recovery of respiration and growth, GSH efflux into the medium and K<sup>+</sup> influx into the cells. A pronounced coupling of P<sub>i</sub>, GSH, and K<sup>+</sup> fluxes was shown upon P<sub>i</sub><span> depletion and addition, which may be necessary to maintain the ionic balance in the cytoplasm. We suggest that processes aimed at restoring cysteine homeostasis may be an integral part of the universal response to stress under different types of stress and for different types of bacteria.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"174 8","pages":"Article 104108"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphate starvation is accompanied by disturbance of intracellular cysteine homeostasis in Escherichia coli\",\"authors\":\"Galina V. Smirnova,&nbsp;Aleksey V. Tyulenev,&nbsp;Kseniya V. Bezmaternykh,&nbsp;Nadezda G. Muzyka,&nbsp;Vadim Y. Ushakov,&nbsp;Oleg N. Oktyabrsky\",\"doi\":\"10.1016/j.resmic.2023.104108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolic rearrangements that occur during depletion of essential nutrients can lead to accumulation of potentially dangerous metabolites. Here we showed that depletion of phosphate (P<sub>i</sub><span>), accompanied by a sharp inhibition of growth and respiration, caused a transient excess of intracellular cysteine due to a decrease in the rate of protein synthesis. High cysteine level can be dangerous due to its ability to produce ROS and reduce Fe</span><sup>3+</sup> to Fenton-reactive Fe<sup>2+</sup>. To prevent these negative effects, excess cysteine was mainly incorporated into glutathione (GSH), the intracellular level of which increased by 3 times, and was also exported to the medium and partially degraded to form H<sub>2</sub>S with participation of 3-mercaptopyruvate sulfotransferase (3MST). The addition of P<sub>i</sub> to starving cells led to a sharp recovery of respiration and growth, GSH efflux into the medium and K<sup>+</sup> influx into the cells. A pronounced coupling of P<sub>i</sub>, GSH, and K<sup>+</sup> fluxes was shown upon P<sub>i</sub><span> depletion and addition, which may be necessary to maintain the ionic balance in the cytoplasm. We suggest that processes aimed at restoring cysteine homeostasis may be an integral part of the universal response to stress under different types of stress and for different types of bacteria.</span></p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\"174 8\",\"pages\":\"Article 104108\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000839\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000839","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在必需营养素消耗过程中发生的代谢重排可能导致潜在危险代谢物的积累。在这里,我们发现磷酸盐(Pi)的耗竭,伴随着生长和呼吸的急剧抑制,由于蛋白质合成速率的降低,导致细胞内半胱氨酸的短暂过量。高半胱氨酸水平可能是危险的,因为它能够产生ROS并将Fe3+还原为Fenton反应性Fe2+。为了防止这些负面影响,过量的半胱氨酸主要被掺入谷胱甘肽(GSH)中,谷胱甘肽的细胞内水平增加了3倍,还被输出到培养基中,并在3-巯基丙酮酸磺基转移酶(3MST)的参与下部分降解形成H2S。向饥饿细胞中添加Pi导致呼吸和生长的急剧恢复,GSH流出到培养基中,K+流入到细胞中。Pi、GSH和K+通量在Pi消耗和添加时表现出明显的耦合,这可能是维持细胞质中离子平衡所必需的。我们认为,旨在恢复半胱氨酸稳态的过程可能是不同类型压力和不同类型细菌对压力的普遍反应的组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphate starvation is accompanied by disturbance of intracellular cysteine homeostasis in Escherichia coli

Metabolic rearrangements that occur during depletion of essential nutrients can lead to accumulation of potentially dangerous metabolites. Here we showed that depletion of phosphate (Pi), accompanied by a sharp inhibition of growth and respiration, caused a transient excess of intracellular cysteine due to a decrease in the rate of protein synthesis. High cysteine level can be dangerous due to its ability to produce ROS and reduce Fe3+ to Fenton-reactive Fe2+. To prevent these negative effects, excess cysteine was mainly incorporated into glutathione (GSH), the intracellular level of which increased by 3 times, and was also exported to the medium and partially degraded to form H2S with participation of 3-mercaptopyruvate sulfotransferase (3MST). The addition of Pi to starving cells led to a sharp recovery of respiration and growth, GSH efflux into the medium and K+ influx into the cells. A pronounced coupling of Pi, GSH, and K+ fluxes was shown upon Pi depletion and addition, which may be necessary to maintain the ionic balance in the cytoplasm. We suggest that processes aimed at restoring cysteine homeostasis may be an integral part of the universal response to stress under different types of stress and for different types of bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信