{"title":"用于估计 SARS-CoV-2 基因组和亚基因组 RNA 病毒动态和血清转换的贝叶斯分层联合模型。","authors":"Tracy Q Dong, Elizabeth R Brown","doi":"10.1093/biostatistics/kxad016","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the viral dynamics of and natural immunity to the severe acute respiratory syndrome coronavirus 2 is crucial for devising better therapeutic and prevention strategies for coronavirus disease 2019 (COVID-19). Here, we present a Bayesian hierarchical model that jointly estimates the genomic RNA viral load, the subgenomic RNA (sgRNA) viral load (correlated to active viral replication), and the rate and timing of seroconversion (correlated to presence of antibodies). Our proposed method accounts for the dynamical relationship and correlation structure between the two types of viral load, allows for borrowing of information between viral load and antibody data, and identifies potential correlates of viral load characteristics and propensity for seroconversion. We demonstrate the features of the joint model through application to the COVID-19 post-exposure prophylaxis study and conduct a cross-validation exercise to illustrate the model's ability to impute the sgRNA viral trajectories for people who only had genomic RNA viral load data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint Bayesian hierarchical model for estimating SARS-CoV-2 genomic and subgenomic RNA viral dynamics and seroconversion.\",\"authors\":\"Tracy Q Dong, Elizabeth R Brown\",\"doi\":\"10.1093/biostatistics/kxad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the viral dynamics of and natural immunity to the severe acute respiratory syndrome coronavirus 2 is crucial for devising better therapeutic and prevention strategies for coronavirus disease 2019 (COVID-19). Here, we present a Bayesian hierarchical model that jointly estimates the genomic RNA viral load, the subgenomic RNA (sgRNA) viral load (correlated to active viral replication), and the rate and timing of seroconversion (correlated to presence of antibodies). Our proposed method accounts for the dynamical relationship and correlation structure between the two types of viral load, allows for borrowing of information between viral load and antibody data, and identifies potential correlates of viral load characteristics and propensity for seroconversion. We demonstrate the features of the joint model through application to the COVID-19 post-exposure prophylaxis study and conduct a cross-validation exercise to illustrate the model's ability to impute the sgRNA viral trajectories for people who only had genomic RNA viral load data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A joint Bayesian hierarchical model for estimating SARS-CoV-2 genomic and subgenomic RNA viral dynamics and seroconversion.
Understanding the viral dynamics of and natural immunity to the severe acute respiratory syndrome coronavirus 2 is crucial for devising better therapeutic and prevention strategies for coronavirus disease 2019 (COVID-19). Here, we present a Bayesian hierarchical model that jointly estimates the genomic RNA viral load, the subgenomic RNA (sgRNA) viral load (correlated to active viral replication), and the rate and timing of seroconversion (correlated to presence of antibodies). Our proposed method accounts for the dynamical relationship and correlation structure between the two types of viral load, allows for borrowing of information between viral load and antibody data, and identifies potential correlates of viral load characteristics and propensity for seroconversion. We demonstrate the features of the joint model through application to the COVID-19 post-exposure prophylaxis study and conduct a cross-validation exercise to illustrate the model's ability to impute the sgRNA viral trajectories for people who only had genomic RNA viral load data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.