用于估计 SARS-CoV-2 基因组和亚基因组 RNA 病毒动态和血清转换的贝叶斯分层联合模型。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Tracy Q Dong, Elizabeth R Brown
{"title":"用于估计 SARS-CoV-2 基因组和亚基因组 RNA 病毒动态和血清转换的贝叶斯分层联合模型。","authors":"Tracy Q Dong, Elizabeth R Brown","doi":"10.1093/biostatistics/kxad016","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the viral dynamics of and natural immunity to the severe acute respiratory syndrome coronavirus 2 is crucial for devising better therapeutic and prevention strategies for coronavirus disease 2019 (COVID-19). Here, we present a Bayesian hierarchical model that jointly estimates the genomic RNA viral load, the subgenomic RNA (sgRNA) viral load (correlated to active viral replication), and the rate and timing of seroconversion (correlated to presence of antibodies). Our proposed method accounts for the dynamical relationship and correlation structure between the two types of viral load, allows for borrowing of information between viral load and antibody data, and identifies potential correlates of viral load characteristics and propensity for seroconversion. We demonstrate the features of the joint model through application to the COVID-19 post-exposure prophylaxis study and conduct a cross-validation exercise to illustrate the model's ability to impute the sgRNA viral trajectories for people who only had genomic RNA viral load data.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"336-353"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint Bayesian hierarchical model for estimating SARS-CoV-2 genomic and subgenomic RNA viral dynamics and seroconversion.\",\"authors\":\"Tracy Q Dong, Elizabeth R Brown\",\"doi\":\"10.1093/biostatistics/kxad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the viral dynamics of and natural immunity to the severe acute respiratory syndrome coronavirus 2 is crucial for devising better therapeutic and prevention strategies for coronavirus disease 2019 (COVID-19). Here, we present a Bayesian hierarchical model that jointly estimates the genomic RNA viral load, the subgenomic RNA (sgRNA) viral load (correlated to active viral replication), and the rate and timing of seroconversion (correlated to presence of antibodies). Our proposed method accounts for the dynamical relationship and correlation structure between the two types of viral load, allows for borrowing of information between viral load and antibody data, and identifies potential correlates of viral load characteristics and propensity for seroconversion. We demonstrate the features of the joint model through application to the COVID-19 post-exposure prophylaxis study and conduct a cross-validation exercise to illustrate the model's ability to impute the sgRNA viral trajectories for people who only had genomic RNA viral load data.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\" \",\"pages\":\"336-353\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad016\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad016","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解严重急性呼吸系统综合征冠状病毒2的病毒动态和天然免疫对于制定更好的2019年冠状病毒病(COVID-19)治疗和预防策略至关重要。在此,我们提出了一种贝叶斯分层模型,该模型可联合估算基因组 RNA 病毒载量、亚基因组 RNA (sgRNA) 病毒载量(与活跃的病毒复制相关)以及血清转换率和时间(与抗体的存在相关)。我们提出的方法考虑了两类病毒载量之间的动态关系和相关结构,允许借用病毒载量和抗体数据之间的信息,并识别病毒载量特征和血清转换倾向的潜在相关因素。我们将联合模型应用于 COVID-19 暴露后预防研究,展示了该模型的特点,并进行了交叉验证,以说明该模型能够为仅有基因组 RNA 病毒载量数据的人群估算 sgRNA 病毒轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A joint Bayesian hierarchical model for estimating SARS-CoV-2 genomic and subgenomic RNA viral dynamics and seroconversion.

Understanding the viral dynamics of and natural immunity to the severe acute respiratory syndrome coronavirus 2 is crucial for devising better therapeutic and prevention strategies for coronavirus disease 2019 (COVID-19). Here, we present a Bayesian hierarchical model that jointly estimates the genomic RNA viral load, the subgenomic RNA (sgRNA) viral load (correlated to active viral replication), and the rate and timing of seroconversion (correlated to presence of antibodies). Our proposed method accounts for the dynamical relationship and correlation structure between the two types of viral load, allows for borrowing of information between viral load and antibody data, and identifies potential correlates of viral load characteristics and propensity for seroconversion. We demonstrate the features of the joint model through application to the COVID-19 post-exposure prophylaxis study and conduct a cross-validation exercise to illustrate the model's ability to impute the sgRNA viral trajectories for people who only had genomic RNA viral load data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信