Xiaoxuan Wang , Ting Ma , Cizhao Wei , Juan Liu , Ting Yu , Yu Zou , Song Liu , Zheqiong Yang , Jinlei Xi
{"title":"外源性维甲酸对斑马鱼胚胎神经发育的毒性作用。","authors":"Xiaoxuan Wang , Ting Ma , Cizhao Wei , Juan Liu , Ting Yu , Yu Zou , Song Liu , Zheqiong Yang , Jinlei Xi","doi":"10.1016/j.ntt.2023.107291","DOIUrl":null,"url":null,"abstract":"<div><p>Endogenous retinoic acid<span><span><span> (RA) is essential for embryonic development and maintaining adult physiological processes. Human-caused RA residues in the environment threaten the survival of organisms in the environment. We employed zebrafish as a model to explore the developmental impacts of excess RA. We used exogenous RA to raise the amount of RA signal in the embryos and looked at the effects of excess RA on embryonic morphological development. Upregulation of the RA signal significantly reduced embryo hatching and increased embryo </span>malformation. To further understand the neurotoxic impact of RA signaling on early </span>neurodevelopment<span><span>, we measured the expression of neurodevelopmental marker genes and cell death and proliferation markers in zebrafish embryos. Exogenous RA disrupted stem cell (SC) and neuron marker gene expression and exacerbated apoptosis in the embryos. Furthermore, we looked into the links between the transcriptional coactivator RBM14 and RA signaling to better understand the mechanism of RA neurotoxicity. There was a negative interaction between RA signaling and the transcription coactivator RBM14, and the morpholino-induced RBM14 down-regulation can partially block the effects of </span>RAR antagonist BMS493-induced RA signaling inhibition on embryonic malformation and cell apoptosis. In conclusion, exogenous RA causes neurodevelopmental toxicity, and RBM14 may be involved in this neurotoxic process.</span></span></p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"100 ","pages":"Article 107291"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic effects of exogenous retinoic acid on the neurodevelopment of zebrafish (Danio rerio) embryos\",\"authors\":\"Xiaoxuan Wang , Ting Ma , Cizhao Wei , Juan Liu , Ting Yu , Yu Zou , Song Liu , Zheqiong Yang , Jinlei Xi\",\"doi\":\"10.1016/j.ntt.2023.107291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Endogenous retinoic acid<span><span><span> (RA) is essential for embryonic development and maintaining adult physiological processes. Human-caused RA residues in the environment threaten the survival of organisms in the environment. We employed zebrafish as a model to explore the developmental impacts of excess RA. We used exogenous RA to raise the amount of RA signal in the embryos and looked at the effects of excess RA on embryonic morphological development. Upregulation of the RA signal significantly reduced embryo hatching and increased embryo </span>malformation. To further understand the neurotoxic impact of RA signaling on early </span>neurodevelopment<span><span>, we measured the expression of neurodevelopmental marker genes and cell death and proliferation markers in zebrafish embryos. Exogenous RA disrupted stem cell (SC) and neuron marker gene expression and exacerbated apoptosis in the embryos. Furthermore, we looked into the links between the transcriptional coactivator RBM14 and RA signaling to better understand the mechanism of RA neurotoxicity. There was a negative interaction between RA signaling and the transcription coactivator RBM14, and the morpholino-induced RBM14 down-regulation can partially block the effects of </span>RAR antagonist BMS493-induced RA signaling inhibition on embryonic malformation and cell apoptosis. In conclusion, exogenous RA causes neurodevelopmental toxicity, and RBM14 may be involved in this neurotoxic process.</span></span></p></div>\",\"PeriodicalId\":19144,\"journal\":{\"name\":\"Neurotoxicology and teratology\",\"volume\":\"100 \",\"pages\":\"Article 107291\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology and teratology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892036223001411\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036223001411","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Toxic effects of exogenous retinoic acid on the neurodevelopment of zebrafish (Danio rerio) embryos
Endogenous retinoic acid (RA) is essential for embryonic development and maintaining adult physiological processes. Human-caused RA residues in the environment threaten the survival of organisms in the environment. We employed zebrafish as a model to explore the developmental impacts of excess RA. We used exogenous RA to raise the amount of RA signal in the embryos and looked at the effects of excess RA on embryonic morphological development. Upregulation of the RA signal significantly reduced embryo hatching and increased embryo malformation. To further understand the neurotoxic impact of RA signaling on early neurodevelopment, we measured the expression of neurodevelopmental marker genes and cell death and proliferation markers in zebrafish embryos. Exogenous RA disrupted stem cell (SC) and neuron marker gene expression and exacerbated apoptosis in the embryos. Furthermore, we looked into the links between the transcriptional coactivator RBM14 and RA signaling to better understand the mechanism of RA neurotoxicity. There was a negative interaction between RA signaling and the transcription coactivator RBM14, and the morpholino-induced RBM14 down-regulation can partially block the effects of RAR antagonist BMS493-induced RA signaling inhibition on embryonic malformation and cell apoptosis. In conclusion, exogenous RA causes neurodevelopmental toxicity, and RBM14 may be involved in this neurotoxic process.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.