细胞单位的自组织。

IF 11.4 1区 生物学 Q1 CELL BIOLOGY
Timothy J Mitchison, Christine M Field
{"title":"细胞单位的自组织。","authors":"Timothy J Mitchison,&nbsp;Christine M Field","doi":"10.1146/annurev-cellbio-120319-025356","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early <i>Drosophila</i> embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"37 ","pages":"23-41"},"PeriodicalIF":11.4000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059766/pdf/nihms-1793618.pdf","citationCount":"11","resultStr":"{\"title\":\"Self-Organization of Cellular Units.\",\"authors\":\"Timothy J Mitchison,&nbsp;Christine M Field\",\"doi\":\"10.1146/annurev-cellbio-120319-025356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early <i>Drosophila</i> embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.</p>\",\"PeriodicalId\":7944,\"journal\":{\"name\":\"Annual review of cell and developmental biology\",\"volume\":\"37 \",\"pages\":\"23-41\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059766/pdf/nihms-1793618.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of cell and developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cellbio-120319-025356\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-120319-025356","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 11

摘要

本文以蛙卵提取物为研究对象,探讨微管的自组织机制和空间组织机制。我们首先回顾亚细胞组织的自组织和模板机制之间的概念区别。然后我们讨论了在没有中心体的情况下产生径向MT阵列和细胞中心的自组织机制。这些包括自催化MT成核,负端运输,以及同样是动力蛋白货物的黑素体和高尔基囊泡等细胞器成核。然后,我们讨论了在合胞体中分裂细胞质的机制,在合胞体中,多个细胞核共享一个共同的细胞质,从细胞分裂开始,当所有后生细胞都是短暂合胞体时。蛙卵细胞质在细胞分裂前由两个自组织模块进行分裂,即细胞分裂1蛋白调节因子(PRC1)-激酶家族成员4A (KIF4A)和染色体乘客复合体(CPC)-KIF20A。类似的模块可能分裂出更持久的合胞体,如早期果蝇胚胎。最后,我们讨论了基于mt的细胞单位自组织的共享机制和原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Organization of Cellular Units.

Self-Organization of Cellular Units.

Self-Organization of Cellular Units.

The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early Drosophila embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信