光诱导蛋白质修饰:一系列生物学后果和应用。

IF 4.9 Q1 BIOPHYSICS
Biophysical reviews Pub Date : 2023-07-01 eCollection Date: 2023-08-01 DOI:10.1007/s12551-023-01081-6
Claudia Cecilia Vera, Claudio Darío Borsarelli
{"title":"光诱导蛋白质修饰:一系列生物学后果和应用。","authors":"Claudia Cecilia Vera, Claudio Darío Borsarelli","doi":"10.1007/s12551-023-01081-6","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are the most abundant biomolecules in living organisms and tissues and are also present in many natural and processed foods and beverages, as well as in pharmaceuticals and therapeutics. When exposed to UV-visible light, proteins containing endogenous or exogenous chromophores can undergo direct and indirect photochemical processes, resulting in protein modifications including oxidation of residues, cross-linking, proteolysis, covalent binding to molecules and interfaces, and conformational changes. When these modifications occur in an uncontrolled manner in a physiological context, they can lead to biological dysfunctions that ultimately result in cell death. However, rational design strategies involving light-activated protein modification have proven to be a valuable tool for the modulation of protein function or even for the construction of new biomaterials. This mini-review describes the fundamentals of photochemical processes in proteins and explores some of their emerging biomedical and nanobiotechnological applications, such as photodynamic therapy (PDT), photobonding for wound healing, photobioprinting, photoimmobilization of biosensors and enzymes for sensing, and biocatalysis, among others.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"15 4","pages":"569-576"},"PeriodicalIF":4.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480124/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photo-induced protein modifications: a range of biological consequences and applications.\",\"authors\":\"Claudia Cecilia Vera, Claudio Darío Borsarelli\",\"doi\":\"10.1007/s12551-023-01081-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins are the most abundant biomolecules in living organisms and tissues and are also present in many natural and processed foods and beverages, as well as in pharmaceuticals and therapeutics. When exposed to UV-visible light, proteins containing endogenous or exogenous chromophores can undergo direct and indirect photochemical processes, resulting in protein modifications including oxidation of residues, cross-linking, proteolysis, covalent binding to molecules and interfaces, and conformational changes. When these modifications occur in an uncontrolled manner in a physiological context, they can lead to biological dysfunctions that ultimately result in cell death. However, rational design strategies involving light-activated protein modification have proven to be a valuable tool for the modulation of protein function or even for the construction of new biomaterials. This mini-review describes the fundamentals of photochemical processes in proteins and explores some of their emerging biomedical and nanobiotechnological applications, such as photodynamic therapy (PDT), photobonding for wound healing, photobioprinting, photoimmobilization of biosensors and enzymes for sensing, and biocatalysis, among others.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"15 4\",\"pages\":\"569-576\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480124/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-023-01081-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01081-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质是生物体和组织中最丰富的生物大分子,也存在于许多天然和加工食品和饮料以及药品和疗法中。当暴露在紫外可见光下时,含有内源性或外源性发色团的蛋白质会发生直接和间接的光化学过程,导致蛋白质发生修饰,包括残基氧化、交联、蛋白水解、与分子和界面的共价结合以及构象变化。当这些修饰在生理环境中以不受控制的方式发生时,就会导致生物功能障碍,最终导致细胞死亡。然而,涉及光激活蛋白质修饰的合理设计策略已被证明是调节蛋白质功能甚至构建新型生物材料的宝贵工具。这篇微型综述介绍了蛋白质光化学过程的基本原理,并探讨了一些新兴的生物医学和纳米生物技术应用,如光动力疗法(PDT)、用于伤口愈合的光键合、光生物打印、用于传感的生物传感器和酶的光固定化以及生物催化等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photo-induced protein modifications: a range of biological consequences and applications.

Proteins are the most abundant biomolecules in living organisms and tissues and are also present in many natural and processed foods and beverages, as well as in pharmaceuticals and therapeutics. When exposed to UV-visible light, proteins containing endogenous or exogenous chromophores can undergo direct and indirect photochemical processes, resulting in protein modifications including oxidation of residues, cross-linking, proteolysis, covalent binding to molecules and interfaces, and conformational changes. When these modifications occur in an uncontrolled manner in a physiological context, they can lead to biological dysfunctions that ultimately result in cell death. However, rational design strategies involving light-activated protein modification have proven to be a valuable tool for the modulation of protein function or even for the construction of new biomaterials. This mini-review describes the fundamentals of photochemical processes in proteins and explores some of their emerging biomedical and nanobiotechnological applications, such as photodynamic therapy (PDT), photobonding for wound healing, photobioprinting, photoimmobilization of biosensors and enzymes for sensing, and biocatalysis, among others.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信