Daniela Giraldo-Roldan, Erin Crespo Cordeiro Ribeiro, Anna Luiza Damaceno Araújo, Paulo Victor Mendes Penafort, Viviane Mariano da Silva, Jeconias Câmara, Hélder Antônio Rebelo Pontes, Manoela Domingues Martins, Márcio Campos Oliveira, Alan Roger Santos-Silva, Marcio Ajudarte Lopes, Luiz Paulo Kowalski, Matheus Cardoso Moraes, Pablo Agustin Vargas
{"title":"深度学习在成釉细胞瘤和成釉细胞癌组织病理学诊断中的应用","authors":"Daniela Giraldo-Roldan, Erin Crespo Cordeiro Ribeiro, Anna Luiza Damaceno Araújo, Paulo Victor Mendes Penafort, Viviane Mariano da Silva, Jeconias Câmara, Hélder Antônio Rebelo Pontes, Manoela Domingues Martins, Márcio Campos Oliveira, Alan Roger Santos-Silva, Marcio Ajudarte Lopes, Luiz Paulo Kowalski, Matheus Cardoso Moraes, Pablo Agustin Vargas","doi":"10.1111/jop.13481","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Odontogenic tumors (OT) are composed of heterogeneous lesions, which can be benign or malignant, with different behavior and histology. Within this classification, ameloblastoma and ameloblastic carcinoma (AC) represent a diagnostic challenge in daily histopathological practice due to their similar characteristics and the limitations that incisional biopsies represent. From these premises, we wanted to test the usefulness of models based on artificial intelligence (AI) in the field of oral and maxillofacial pathology for differential diagnosis. The main advantages of integrating Machine Learning (ML) with microscopic and radiographic imaging is the ability to significantly reduce intra-and inter observer variability and improve diagnostic objectivity and reproducibility.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Thirty Digitized slides were collected from different diagnostic centers of oral pathology in Brazil. After performing manual annotation in the region of interest, the images were segmented and fragmented into small patches. In the supervised learning methodology for image classification, three models (ResNet50, DenseNet, and VGG16) were focus of investigation to provide the probability of an image being classified as class0 (i.e., ameloblastoma) or class1 (i.e., Ameloblastic carcinoma).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The training and validation metrics did not show convergence, characterizing overfitting. However, the test results were satisfactory, with an average for ResNet50 of 0.75, 0.71, 0.84, 0.65, and 0.77 for accuracy, precision, sensitivity, specificity, and F1-score, respectively.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The models demonstrated a strong potential of learning, but lack of generalization ability. The models learn fast, reaching a training accuracy of 98%. The evaluation process showed instability in validation; however, acceptable performance in the testing process, which may be due to the small data set. This first investigation opens an opportunity for expanding collaboration to incorporate more complementary data; as well as, developing and evaluating new alternative models.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning applied to the histopathological diagnosis of ameloblastomas and ameloblastic carcinomas\",\"authors\":\"Daniela Giraldo-Roldan, Erin Crespo Cordeiro Ribeiro, Anna Luiza Damaceno Araújo, Paulo Victor Mendes Penafort, Viviane Mariano da Silva, Jeconias Câmara, Hélder Antônio Rebelo Pontes, Manoela Domingues Martins, Márcio Campos Oliveira, Alan Roger Santos-Silva, Marcio Ajudarte Lopes, Luiz Paulo Kowalski, Matheus Cardoso Moraes, Pablo Agustin Vargas\",\"doi\":\"10.1111/jop.13481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Odontogenic tumors (OT) are composed of heterogeneous lesions, which can be benign or malignant, with different behavior and histology. Within this classification, ameloblastoma and ameloblastic carcinoma (AC) represent a diagnostic challenge in daily histopathological practice due to their similar characteristics and the limitations that incisional biopsies represent. From these premises, we wanted to test the usefulness of models based on artificial intelligence (AI) in the field of oral and maxillofacial pathology for differential diagnosis. The main advantages of integrating Machine Learning (ML) with microscopic and radiographic imaging is the ability to significantly reduce intra-and inter observer variability and improve diagnostic objectivity and reproducibility.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Thirty Digitized slides were collected from different diagnostic centers of oral pathology in Brazil. After performing manual annotation in the region of interest, the images were segmented and fragmented into small patches. In the supervised learning methodology for image classification, three models (ResNet50, DenseNet, and VGG16) were focus of investigation to provide the probability of an image being classified as class0 (i.e., ameloblastoma) or class1 (i.e., Ameloblastic carcinoma).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The training and validation metrics did not show convergence, characterizing overfitting. However, the test results were satisfactory, with an average for ResNet50 of 0.75, 0.71, 0.84, 0.65, and 0.77 for accuracy, precision, sensitivity, specificity, and F1-score, respectively.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The models demonstrated a strong potential of learning, but lack of generalization ability. The models learn fast, reaching a training accuracy of 98%. The evaluation process showed instability in validation; however, acceptable performance in the testing process, which may be due to the small data set. This first investigation opens an opportunity for expanding collaboration to incorporate more complementary data; as well as, developing and evaluating new alternative models.</p>\\n </section>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jop.13481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jop.13481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Deep learning applied to the histopathological diagnosis of ameloblastomas and ameloblastic carcinomas
Background
Odontogenic tumors (OT) are composed of heterogeneous lesions, which can be benign or malignant, with different behavior and histology. Within this classification, ameloblastoma and ameloblastic carcinoma (AC) represent a diagnostic challenge in daily histopathological practice due to their similar characteristics and the limitations that incisional biopsies represent. From these premises, we wanted to test the usefulness of models based on artificial intelligence (AI) in the field of oral and maxillofacial pathology for differential diagnosis. The main advantages of integrating Machine Learning (ML) with microscopic and radiographic imaging is the ability to significantly reduce intra-and inter observer variability and improve diagnostic objectivity and reproducibility.
Methods
Thirty Digitized slides were collected from different diagnostic centers of oral pathology in Brazil. After performing manual annotation in the region of interest, the images were segmented and fragmented into small patches. In the supervised learning methodology for image classification, three models (ResNet50, DenseNet, and VGG16) were focus of investigation to provide the probability of an image being classified as class0 (i.e., ameloblastoma) or class1 (i.e., Ameloblastic carcinoma).
Results
The training and validation metrics did not show convergence, characterizing overfitting. However, the test results were satisfactory, with an average for ResNet50 of 0.75, 0.71, 0.84, 0.65, and 0.77 for accuracy, precision, sensitivity, specificity, and F1-score, respectively.
Conclusions
The models demonstrated a strong potential of learning, but lack of generalization ability. The models learn fast, reaching a training accuracy of 98%. The evaluation process showed instability in validation; however, acceptable performance in the testing process, which may be due to the small data set. This first investigation opens an opportunity for expanding collaboration to incorporate more complementary data; as well as, developing and evaluating new alternative models.