{"title":"脑溶素与丰富环境联合治疗对创伤后应激障碍样小鼠焦虑样行为和空间认知缺陷的协同作用","authors":"Leila Hosseini, Saeed Sadigh-Eteghad, Fereshteh Farajdokht, Hanieh Salehi-Pourmehr, Amir Pasokh, Mojtaba Ziaee, Siamak Sandoghchian Shotorbani, Mir-Jamal Hosseini, Javad Mahmoudi","doi":"10.1097/FBP.0000000000000722","DOIUrl":null,"url":null,"abstract":"<p><p>Posttraumatic stress disorder (PTSD) is a serious neuropsychiatric disorder that occurs after exposure to stressful, fearful, or troubling events. Cerebrolysin (CBL), consists of low molecular weights neurotrophic factors and amino acids obtained from purified porcine brain proteins. This study aimed to evaluate the possible therapeutic effects of enriched environment (EE) and CBL alone or combined for reducing anxiety and cognitive deficits in PTSD-like mouse models. For this purpose, inescapable electric foot shocks were delivered to Balb/c mice for two consecutive days. Then mice were treated with CBL (2.5 mL/kg) and/or were kept in EE (2 h per day) or received their combination for 14 consecutive days. The hole-board test and Lashley III paradigm were used to assess anxiety and spatial learning and memory, respectively. Changes in the serum corticosterone level and expression of synaptic elements, including; growth-associated protein 43, post-synaptic density 95, and synaptophysin were assessed in the hippocampus. This model caused anxiety and spatial memory impairment associated with increased serum corticosterone levels and decreased synaptic elements. Nevertheless, CBL and/or combination treatment could reverse behavioral and molecular alterations. Our findings indicated that CBL, separately or in combination with EE, is effective in reducing anxiety and spatial memory impairment in PTSD-like mice.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":"34 4","pages":"197-205"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synergistic effects of combined therapy with cerebrolysin and enriched environment on anxiety-like behavior and spatial cognitive deficits in posttraumatic stress disorder-like mouse model.\",\"authors\":\"Leila Hosseini, Saeed Sadigh-Eteghad, Fereshteh Farajdokht, Hanieh Salehi-Pourmehr, Amir Pasokh, Mojtaba Ziaee, Siamak Sandoghchian Shotorbani, Mir-Jamal Hosseini, Javad Mahmoudi\",\"doi\":\"10.1097/FBP.0000000000000722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Posttraumatic stress disorder (PTSD) is a serious neuropsychiatric disorder that occurs after exposure to stressful, fearful, or troubling events. Cerebrolysin (CBL), consists of low molecular weights neurotrophic factors and amino acids obtained from purified porcine brain proteins. This study aimed to evaluate the possible therapeutic effects of enriched environment (EE) and CBL alone or combined for reducing anxiety and cognitive deficits in PTSD-like mouse models. For this purpose, inescapable electric foot shocks were delivered to Balb/c mice for two consecutive days. Then mice were treated with CBL (2.5 mL/kg) and/or were kept in EE (2 h per day) or received their combination for 14 consecutive days. The hole-board test and Lashley III paradigm were used to assess anxiety and spatial learning and memory, respectively. Changes in the serum corticosterone level and expression of synaptic elements, including; growth-associated protein 43, post-synaptic density 95, and synaptophysin were assessed in the hippocampus. This model caused anxiety and spatial memory impairment associated with increased serum corticosterone levels and decreased synaptic elements. Nevertheless, CBL and/or combination treatment could reverse behavioral and molecular alterations. Our findings indicated that CBL, separately or in combination with EE, is effective in reducing anxiety and spatial memory impairment in PTSD-like mice.</p>\",\"PeriodicalId\":8832,\"journal\":{\"name\":\"Behavioural Pharmacology\",\"volume\":\"34 4\",\"pages\":\"197-205\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Pharmacology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1097/FBP.0000000000000722\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000722","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Synergistic effects of combined therapy with cerebrolysin and enriched environment on anxiety-like behavior and spatial cognitive deficits in posttraumatic stress disorder-like mouse model.
Posttraumatic stress disorder (PTSD) is a serious neuropsychiatric disorder that occurs after exposure to stressful, fearful, or troubling events. Cerebrolysin (CBL), consists of low molecular weights neurotrophic factors and amino acids obtained from purified porcine brain proteins. This study aimed to evaluate the possible therapeutic effects of enriched environment (EE) and CBL alone or combined for reducing anxiety and cognitive deficits in PTSD-like mouse models. For this purpose, inescapable electric foot shocks were delivered to Balb/c mice for two consecutive days. Then mice were treated with CBL (2.5 mL/kg) and/or were kept in EE (2 h per day) or received their combination for 14 consecutive days. The hole-board test and Lashley III paradigm were used to assess anxiety and spatial learning and memory, respectively. Changes in the serum corticosterone level and expression of synaptic elements, including; growth-associated protein 43, post-synaptic density 95, and synaptophysin were assessed in the hippocampus. This model caused anxiety and spatial memory impairment associated with increased serum corticosterone levels and decreased synaptic elements. Nevertheless, CBL and/or combination treatment could reverse behavioral and molecular alterations. Our findings indicated that CBL, separately or in combination with EE, is effective in reducing anxiety and spatial memory impairment in PTSD-like mice.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.