LSR抗体通过信号通路促进子宫内膜癌细胞凋亡和破坏上皮屏障。

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Kimihito Saito, Takumi Konno, Takayuki Kohno, Hiroshi Shimada, Motoki Matsuura, Tadahi Okada, Arisa Kura, Daichi Ishii, Masuo Kondoh, Tsuyoshi Saito, Takashi Kojima
{"title":"LSR抗体通过信号通路促进子宫内膜癌细胞凋亡和破坏上皮屏障。","authors":"Kimihito Saito,&nbsp;Takumi Konno,&nbsp;Takayuki Kohno,&nbsp;Hiroshi Shimada,&nbsp;Motoki Matsuura,&nbsp;Tadahi Okada,&nbsp;Arisa Kura,&nbsp;Daichi Ishii,&nbsp;Masuo Kondoh,&nbsp;Tsuyoshi Saito,&nbsp;Takashi Kojima","doi":"10.1080/21688370.2022.2106113","DOIUrl":null,"url":null,"abstract":"<p><p>Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial barrier. LSR is highly expressed in well-differentiated endometrial endometrioid carcinoma (EEC), and its expression decreases during malignancy. Angubindin-1, a novel LSR ligand peptide, regulates tTJs without cytotoxicity, enhances paracellular permeability, and regulates epithelial barrier via c-Jun N-terminal kinase (JNK)/cofilin. In this study, we investigated the immune-modulatory roles of an anti-LSR antibody in the treatment of EEC in vitro compared to those of angubindin-1. We prepared an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) and angubindin-1. EEC cell-line Sawano cells in 2D and 2.5D cultures were treated with 100 μg/ml LSR-N-ab or 2.5 μg/ml angubindin-1 with or without protein tyrosine kinase 2β inhibitor PF431396 (PF43) and JNK inhibitor SP600125 (SP60) at 10 μM. Treatment with LSR-N-ab and angubindin-1 decreased LSR at the membranes of tTJs and the activity of phosphorylated LSR and phosphorylated cofilin in 2D culture. Treatment with LSR-N-ab and angubindin-1 decreased the epithelial barrier measured as TEER values in 2D culture and enhanced the epithelial permeability of FD-4 in 2.5D culture. Treatment with LSR-N-ab, but not angubindin-1, induced apoptosis in 2D culture. Pretreatment with PF43 and SP60 prevented all the changes induced by treatment with LSR-N-ab and angubindin-1. Treatment with LSR-N-ab and angubindin-1 enhanced the cell metabolism measured as the mitochondrial respiration levels in 2D culture. LSR-N-ab and angubindin-1 may be useful for therapy of human EEC via enhanced apoptosis or drug absorption.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":"11 3","pages":"2106113"},"PeriodicalIF":3.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364657/pdf/KTIB_11_2106113.pdf","citationCount":"1","resultStr":"{\"title\":\"LSR antibody promotes apoptosis and disrupts epithelial barriers via signal pathways in endometrial cancer.\",\"authors\":\"Kimihito Saito,&nbsp;Takumi Konno,&nbsp;Takayuki Kohno,&nbsp;Hiroshi Shimada,&nbsp;Motoki Matsuura,&nbsp;Tadahi Okada,&nbsp;Arisa Kura,&nbsp;Daichi Ishii,&nbsp;Masuo Kondoh,&nbsp;Tsuyoshi Saito,&nbsp;Takashi Kojima\",\"doi\":\"10.1080/21688370.2022.2106113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial barrier. LSR is highly expressed in well-differentiated endometrial endometrioid carcinoma (EEC), and its expression decreases during malignancy. Angubindin-1, a novel LSR ligand peptide, regulates tTJs without cytotoxicity, enhances paracellular permeability, and regulates epithelial barrier via c-Jun N-terminal kinase (JNK)/cofilin. In this study, we investigated the immune-modulatory roles of an anti-LSR antibody in the treatment of EEC in vitro compared to those of angubindin-1. We prepared an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) and angubindin-1. EEC cell-line Sawano cells in 2D and 2.5D cultures were treated with 100 μg/ml LSR-N-ab or 2.5 μg/ml angubindin-1 with or without protein tyrosine kinase 2β inhibitor PF431396 (PF43) and JNK inhibitor SP600125 (SP60) at 10 μM. Treatment with LSR-N-ab and angubindin-1 decreased LSR at the membranes of tTJs and the activity of phosphorylated LSR and phosphorylated cofilin in 2D culture. Treatment with LSR-N-ab and angubindin-1 decreased the epithelial barrier measured as TEER values in 2D culture and enhanced the epithelial permeability of FD-4 in 2.5D culture. Treatment with LSR-N-ab, but not angubindin-1, induced apoptosis in 2D culture. Pretreatment with PF43 and SP60 prevented all the changes induced by treatment with LSR-N-ab and angubindin-1. Treatment with LSR-N-ab and angubindin-1 enhanced the cell metabolism measured as the mitochondrial respiration levels in 2D culture. LSR-N-ab and angubindin-1 may be useful for therapy of human EEC via enhanced apoptosis or drug absorption.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\"11 3\",\"pages\":\"2106113\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364657/pdf/KTIB_11_2106113.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2022.2106113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2022.2106113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

脂溶刺激脂蛋白受体(LSR)是一种定位于三细胞紧密连接(tTJs)的脂质代谢相关因子,在维持上皮屏障中起重要作用。LSR在高分化子宫内膜样癌(EEC)中高表达,在恶性过程中表达降低。angubinin -1是一种新型的LSR配体肽,它通过c-Jun n-末端激酶(JNK)/cofilin调节tTJs,而不产生细胞毒性,增强细胞旁通透性,调节上皮屏障。在这项研究中,我们研究了抗lsr抗体在体外治疗EEC中的免疫调节作用,并与angubinin -1进行了比较。我们制备了一种针对人LSR细胞外n端结构域的抗体(LSR- n- ab)和angubinin -1。用100 μg/ml LSR-N-ab或2.5 μg/ml angubinin -1加或不加蛋白酪氨酸激酶2β抑制剂PF431396 (PF43)和JNK抑制剂SP600125 (SP60)在10 μM下处理EEC细胞系Sawano细胞。在二维培养中,LSR- n- ab和angubinin -1处理降低了tTJs膜上的LSR和磷酸化LSR和磷酸化cofilin的活性。LSR-N-ab和angubinin -1在2D培养中降低了上皮屏障TEER值,在2.5D培养中增强了FD-4的上皮通透性。用LSR-N-ab而不是angubinin -1处理可诱导2D培养细胞凋亡。PF43和SP60预处理可阻止LSR-N-ab和angubinin -1治疗引起的所有变化。用LSR-N-ab和angubinin -1处理可提高细胞代谢(以二维培养中线粒体呼吸水平测量)。LSR-N-ab和angubinin -1可能通过增强细胞凋亡或药物吸收来治疗人EEC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSR antibody promotes apoptosis and disrupts epithelial barriers via signal pathways in endometrial cancer.

Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial barrier. LSR is highly expressed in well-differentiated endometrial endometrioid carcinoma (EEC), and its expression decreases during malignancy. Angubindin-1, a novel LSR ligand peptide, regulates tTJs without cytotoxicity, enhances paracellular permeability, and regulates epithelial barrier via c-Jun N-terminal kinase (JNK)/cofilin. In this study, we investigated the immune-modulatory roles of an anti-LSR antibody in the treatment of EEC in vitro compared to those of angubindin-1. We prepared an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) and angubindin-1. EEC cell-line Sawano cells in 2D and 2.5D cultures were treated with 100 μg/ml LSR-N-ab or 2.5 μg/ml angubindin-1 with or without protein tyrosine kinase 2β inhibitor PF431396 (PF43) and JNK inhibitor SP600125 (SP60) at 10 μM. Treatment with LSR-N-ab and angubindin-1 decreased LSR at the membranes of tTJs and the activity of phosphorylated LSR and phosphorylated cofilin in 2D culture. Treatment with LSR-N-ab and angubindin-1 decreased the epithelial barrier measured as TEER values in 2D culture and enhanced the epithelial permeability of FD-4 in 2.5D culture. Treatment with LSR-N-ab, but not angubindin-1, induced apoptosis in 2D culture. Pretreatment with PF43 and SP60 prevented all the changes induced by treatment with LSR-N-ab and angubindin-1. Treatment with LSR-N-ab and angubindin-1 enhanced the cell metabolism measured as the mitochondrial respiration levels in 2D culture. LSR-N-ab and angubindin-1 may be useful for therapy of human EEC via enhanced apoptosis or drug absorption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信