Dong-Kun Zhao, Jie Liang, Xiao-Yi Huang, Song Shen, Jun Wang
{"title":"推进癌症纳米医学临床转化的类器官技术。","authors":"Dong-Kun Zhao, Jie Liang, Xiao-Yi Huang, Song Shen, Jun Wang","doi":"10.1002/wnan.1892","DOIUrl":null,"url":null,"abstract":"<p><p>The past decades have witnessed the rapid development and widespread application of nanomedicines in cancer treatment; however, the clinical translation of experimental findings has been low, as evidenced by the low percentage of commercialized nanomedicines. Incomplete understanding of nanomedicine-tumor interactions and inappropriate evaluation models are two important challenges limiting the clinical translation of cancer nanomedicines. Currently, nanomedicine-tumor interaction and therapeutic effects are mainly investigated using cell lines or mouse models, which do not recapitulate the complex tumor microenvironment in human patients. Thus, information obtained from cell lines and mouse models cannot provide adequate guidance for the rational redesign of nanomedicine. Compared with other preclinical models, tumor organoids constructed from patient-derived tumor tissues are superior in retaining the key histopathological, genetic, and phenotypic features of the parent tumor. We speculate that organoid technology would help elucidate nanomedicine-tumor interaction in the tumor microenvironment and guide the design of nanomedicine, making it a reliable tool to accurately predict drug responses in patients with cancer. This review highlighted the advantages of drug delivery systems in cancer treatment, challenges limiting the clinical translation of antitumor nanomedicines, and potential application of patient-derived organoids (PDO) in nanomedicine. We propose that combining organoids and nanotechnology would facilitate the development of safe and effective cancer nanomedicines and accelerate their clinical application. This review discussed the potential translational value of integrative research using organoids and cancer nanomedicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 5","pages":"e1892"},"PeriodicalIF":6.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Organoids technology for advancing the clinical translation of cancer nanomedicine.\",\"authors\":\"Dong-Kun Zhao, Jie Liang, Xiao-Yi Huang, Song Shen, Jun Wang\",\"doi\":\"10.1002/wnan.1892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The past decades have witnessed the rapid development and widespread application of nanomedicines in cancer treatment; however, the clinical translation of experimental findings has been low, as evidenced by the low percentage of commercialized nanomedicines. Incomplete understanding of nanomedicine-tumor interactions and inappropriate evaluation models are two important challenges limiting the clinical translation of cancer nanomedicines. Currently, nanomedicine-tumor interaction and therapeutic effects are mainly investigated using cell lines or mouse models, which do not recapitulate the complex tumor microenvironment in human patients. Thus, information obtained from cell lines and mouse models cannot provide adequate guidance for the rational redesign of nanomedicine. Compared with other preclinical models, tumor organoids constructed from patient-derived tumor tissues are superior in retaining the key histopathological, genetic, and phenotypic features of the parent tumor. We speculate that organoid technology would help elucidate nanomedicine-tumor interaction in the tumor microenvironment and guide the design of nanomedicine, making it a reliable tool to accurately predict drug responses in patients with cancer. This review highlighted the advantages of drug delivery systems in cancer treatment, challenges limiting the clinical translation of antitumor nanomedicines, and potential application of patient-derived organoids (PDO) in nanomedicine. We propose that combining organoids and nanotechnology would facilitate the development of safe and effective cancer nanomedicines and accelerate their clinical application. This review discussed the potential translational value of integrative research using organoids and cancer nanomedicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"15 5\",\"pages\":\"e1892\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1892\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1892","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Organoids technology for advancing the clinical translation of cancer nanomedicine.
The past decades have witnessed the rapid development and widespread application of nanomedicines in cancer treatment; however, the clinical translation of experimental findings has been low, as evidenced by the low percentage of commercialized nanomedicines. Incomplete understanding of nanomedicine-tumor interactions and inappropriate evaluation models are two important challenges limiting the clinical translation of cancer nanomedicines. Currently, nanomedicine-tumor interaction and therapeutic effects are mainly investigated using cell lines or mouse models, which do not recapitulate the complex tumor microenvironment in human patients. Thus, information obtained from cell lines and mouse models cannot provide adequate guidance for the rational redesign of nanomedicine. Compared with other preclinical models, tumor organoids constructed from patient-derived tumor tissues are superior in retaining the key histopathological, genetic, and phenotypic features of the parent tumor. We speculate that organoid technology would help elucidate nanomedicine-tumor interaction in the tumor microenvironment and guide the design of nanomedicine, making it a reliable tool to accurately predict drug responses in patients with cancer. This review highlighted the advantages of drug delivery systems in cancer treatment, challenges limiting the clinical translation of antitumor nanomedicines, and potential application of patient-derived organoids (PDO) in nanomedicine. We propose that combining organoids and nanotechnology would facilitate the development of safe and effective cancer nanomedicines and accelerate their clinical application. This review discussed the potential translational value of integrative research using organoids and cancer nanomedicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.