Emanuela Salvatorelli, Giorgio Minotti, Pierantonio Menna
{"title":"急性髓系白血病和抗真菌药物的新靶向药物:药代动力学的挑战和机遇。","authors":"Emanuela Salvatorelli, Giorgio Minotti, Pierantonio Menna","doi":"10.1159/000530447","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute myeloid leukemia (AML) is a life-threatening disease whose treatment is made difficult by a number of mutations or receptor overexpression in the proliferating cellular clones. Life expectancy of patients diagnosed with new, relapsed-refractory, or secondary AML has been improved by drugs targeted at such moieties. Regrettably, however, clinical use of new AML drugs is complicated by pharmacokinetic interactions with other drugs the patient is exposed to.</p><p><strong>Summary: </strong>The most relevant drug-drug interactions (DDI) with clinical implications build on competition for or induction/inhibition of CYP3A4, which is a versatile metabolizer of a plethora of pharmacological agents. Here, we review DDI between AML drugs and the agents used to prevent or treat invasive fungal infections (IFI). The pathophysiology of AML, characterized by functionally defective white blood cells and neutropenic/immunosuppressive effects of concomitant induction chemotherapy, can in fact increase the risk of infectious complications, with IFI causing high rates of morbidity and mortality. Triazole antifungals, such as posaconazole, are strong inhibitors of CYP3A4 and may thus cause patient's overexposure to AML drugs that are metabolized by CYP3A4. We describe potential strategies to minimize the consequences of DDI between triazole antifungals and targeted therapies for AML and the role that collaboration between clinical pharmacologists, hematologists, and clinical or laboratory microbiologists may have in these settings.</p><p><strong>Key messages: </strong>Therapeutic drug monitoring and clinical pharmacology stewardship could represent two strategies that best express multidisciplinary collaboration for improving patient management.</p>","PeriodicalId":10047,"journal":{"name":"Chemotherapy","volume":"68 3","pages":"170-182"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Targeted Drugs for Acute Myeloid Leukemia and Antifungals: Pharmacokinetic Challenges and Opportunities.\",\"authors\":\"Emanuela Salvatorelli, Giorgio Minotti, Pierantonio Menna\",\"doi\":\"10.1159/000530447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute myeloid leukemia (AML) is a life-threatening disease whose treatment is made difficult by a number of mutations or receptor overexpression in the proliferating cellular clones. Life expectancy of patients diagnosed with new, relapsed-refractory, or secondary AML has been improved by drugs targeted at such moieties. Regrettably, however, clinical use of new AML drugs is complicated by pharmacokinetic interactions with other drugs the patient is exposed to.</p><p><strong>Summary: </strong>The most relevant drug-drug interactions (DDI) with clinical implications build on competition for or induction/inhibition of CYP3A4, which is a versatile metabolizer of a plethora of pharmacological agents. Here, we review DDI between AML drugs and the agents used to prevent or treat invasive fungal infections (IFI). The pathophysiology of AML, characterized by functionally defective white blood cells and neutropenic/immunosuppressive effects of concomitant induction chemotherapy, can in fact increase the risk of infectious complications, with IFI causing high rates of morbidity and mortality. Triazole antifungals, such as posaconazole, are strong inhibitors of CYP3A4 and may thus cause patient's overexposure to AML drugs that are metabolized by CYP3A4. We describe potential strategies to minimize the consequences of DDI between triazole antifungals and targeted therapies for AML and the role that collaboration between clinical pharmacologists, hematologists, and clinical or laboratory microbiologists may have in these settings.</p><p><strong>Key messages: </strong>Therapeutic drug monitoring and clinical pharmacology stewardship could represent two strategies that best express multidisciplinary collaboration for improving patient management.</p>\",\"PeriodicalId\":10047,\"journal\":{\"name\":\"Chemotherapy\",\"volume\":\"68 3\",\"pages\":\"170-182\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000530447\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000530447","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
New Targeted Drugs for Acute Myeloid Leukemia and Antifungals: Pharmacokinetic Challenges and Opportunities.
Background: Acute myeloid leukemia (AML) is a life-threatening disease whose treatment is made difficult by a number of mutations or receptor overexpression in the proliferating cellular clones. Life expectancy of patients diagnosed with new, relapsed-refractory, or secondary AML has been improved by drugs targeted at such moieties. Regrettably, however, clinical use of new AML drugs is complicated by pharmacokinetic interactions with other drugs the patient is exposed to.
Summary: The most relevant drug-drug interactions (DDI) with clinical implications build on competition for or induction/inhibition of CYP3A4, which is a versatile metabolizer of a plethora of pharmacological agents. Here, we review DDI between AML drugs and the agents used to prevent or treat invasive fungal infections (IFI). The pathophysiology of AML, characterized by functionally defective white blood cells and neutropenic/immunosuppressive effects of concomitant induction chemotherapy, can in fact increase the risk of infectious complications, with IFI causing high rates of morbidity and mortality. Triazole antifungals, such as posaconazole, are strong inhibitors of CYP3A4 and may thus cause patient's overexposure to AML drugs that are metabolized by CYP3A4. We describe potential strategies to minimize the consequences of DDI between triazole antifungals and targeted therapies for AML and the role that collaboration between clinical pharmacologists, hematologists, and clinical or laboratory microbiologists may have in these settings.
Key messages: Therapeutic drug monitoring and clinical pharmacology stewardship could represent two strategies that best express multidisciplinary collaboration for improving patient management.
期刊介绍:
This journal publishes original research articles and state-of-the-art reviews on all aspects of antimicrobial and antitumor chemotherapy. The results of experimental and clinical investigations into the microbiological and pharmacologic properties of antibacterial, antiviral and antitumor compounds are major topics of publication. Papers selected for the journal offer data concerning the efficacy, toxicology, and interactions of new drugs in single or combined applications. Studies designed to determine the pharmacokinetic and pharmacodynamics properties of similar preparations and comparing their efficacy are also included. Special emphasis is given to the development of drug-resistance, an increasing problem worldwide.