Dan Ma, Huiyuan Zhang, Le Yin, Hao Xu, Lida Wu, Rahul Shaji, Fatema Rezai, Ayesha Mulla, Sukhteerath Kaur, Shengjiang Tan, Boris Kysela, Yilong Wang, Zhiguo Chen, Chao Zhao, Yuchun Gu
{"title":"人ipsc来源的内皮细胞通过BDNF和mTORC1途径促进中枢神经系统再髓鞘形成","authors":"Dan Ma, Huiyuan Zhang, Le Yin, Hao Xu, Lida Wu, Rahul Shaji, Fatema Rezai, Ayesha Mulla, Sukhteerath Kaur, Shengjiang Tan, Boris Kysela, Yilong Wang, Zhiguo Chen, Chao Zhao, Yuchun Gu","doi":"10.1002/glia.24466","DOIUrl":null,"url":null,"abstract":"<p>Damage of myelin is a component of many diseases in the central nervous system (CNS). The activation and maturation of the quiescent oligodendrocyte progenitor cells (OPCs) are the crucial cellular processes for CNS remyelination, which is influenced by neuroinflammation in the lesion microenvironment. Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) have shown promise in restoring function in various preclinical animal models. Here we ask whether and whether transplantation of hiPSC-ECs could benefit remyelination in a mouse model of CNS demyelination. Our results show that <i>in vitro</i>, hiPSC-ECs increase OPC proliferation, migration and differentiation via secreted soluble factors including brain-derived neurotrophic factor (BDNF). hiPSC-ECs also promote the survival of oligodendrocyte lineage cells <i>in vitro</i> and <i>in vivo</i>. Transplantation of hiPSC-ECs into a toxin-induced demyelination lesion in mouse corpus callosum (CC) leads to increased density of oligodendrocyte lineage cells and level of myelin in demyelinated area, correlated with a decreased neuroinflammation and an increased proportion of pro-regenerative M2 phenotype in microglia/macrophages. The hiPSC-EC-exposed oligodendrocyte lineage cells showed significant increase in the level of phosphorylated S6 ribosomal protein (pS6) both <i>in vitro</i> and <i>in vivo</i>, indicating an involvement of mTORC1 pathway. These results suggest that hiPSC-ECs may benefit myelin protection and regeneration which providing a potential source of cell therapy for a wide range of diseases and injuries associated with myelin damage.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 1","pages":"133-155"},"PeriodicalIF":5.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24466","citationCount":"0","resultStr":"{\"title\":\"Human iPSC-derived endothelial cells promote CNS remyelination via BDNF and mTORC1 pathway\",\"authors\":\"Dan Ma, Huiyuan Zhang, Le Yin, Hao Xu, Lida Wu, Rahul Shaji, Fatema Rezai, Ayesha Mulla, Sukhteerath Kaur, Shengjiang Tan, Boris Kysela, Yilong Wang, Zhiguo Chen, Chao Zhao, Yuchun Gu\",\"doi\":\"10.1002/glia.24466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Damage of myelin is a component of many diseases in the central nervous system (CNS). The activation and maturation of the quiescent oligodendrocyte progenitor cells (OPCs) are the crucial cellular processes for CNS remyelination, which is influenced by neuroinflammation in the lesion microenvironment. Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) have shown promise in restoring function in various preclinical animal models. Here we ask whether and whether transplantation of hiPSC-ECs could benefit remyelination in a mouse model of CNS demyelination. Our results show that <i>in vitro</i>, hiPSC-ECs increase OPC proliferation, migration and differentiation via secreted soluble factors including brain-derived neurotrophic factor (BDNF). hiPSC-ECs also promote the survival of oligodendrocyte lineage cells <i>in vitro</i> and <i>in vivo</i>. Transplantation of hiPSC-ECs into a toxin-induced demyelination lesion in mouse corpus callosum (CC) leads to increased density of oligodendrocyte lineage cells and level of myelin in demyelinated area, correlated with a decreased neuroinflammation and an increased proportion of pro-regenerative M2 phenotype in microglia/macrophages. The hiPSC-EC-exposed oligodendrocyte lineage cells showed significant increase in the level of phosphorylated S6 ribosomal protein (pS6) both <i>in vitro</i> and <i>in vivo</i>, indicating an involvement of mTORC1 pathway. These results suggest that hiPSC-ECs may benefit myelin protection and regeneration which providing a potential source of cell therapy for a wide range of diseases and injuries associated with myelin damage.</p>\",\"PeriodicalId\":174,\"journal\":{\"name\":\"Glia\",\"volume\":\"72 1\",\"pages\":\"133-155\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24466\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/glia.24466\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.24466","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Human iPSC-derived endothelial cells promote CNS remyelination via BDNF and mTORC1 pathway
Damage of myelin is a component of many diseases in the central nervous system (CNS). The activation and maturation of the quiescent oligodendrocyte progenitor cells (OPCs) are the crucial cellular processes for CNS remyelination, which is influenced by neuroinflammation in the lesion microenvironment. Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) have shown promise in restoring function in various preclinical animal models. Here we ask whether and whether transplantation of hiPSC-ECs could benefit remyelination in a mouse model of CNS demyelination. Our results show that in vitro, hiPSC-ECs increase OPC proliferation, migration and differentiation via secreted soluble factors including brain-derived neurotrophic factor (BDNF). hiPSC-ECs also promote the survival of oligodendrocyte lineage cells in vitro and in vivo. Transplantation of hiPSC-ECs into a toxin-induced demyelination lesion in mouse corpus callosum (CC) leads to increased density of oligodendrocyte lineage cells and level of myelin in demyelinated area, correlated with a decreased neuroinflammation and an increased proportion of pro-regenerative M2 phenotype in microglia/macrophages. The hiPSC-EC-exposed oligodendrocyte lineage cells showed significant increase in the level of phosphorylated S6 ribosomal protein (pS6) both in vitro and in vivo, indicating an involvement of mTORC1 pathway. These results suggest that hiPSC-ECs may benefit myelin protection and regeneration which providing a potential source of cell therapy for a wide range of diseases and injuries associated with myelin damage.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.