miR-654-5p通过靶向ADAMTS-7抑制血管平滑肌细胞的迁移和增殖

IF 2.9 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Liu Li, Shuo Wang, Ming Wang, Gang Liu, Zhiyu Yang, Le Wang
{"title":"miR-654-5p通过靶向ADAMTS-7抑制血管平滑肌细胞的迁移和增殖","authors":"Liu Li,&nbsp;Shuo Wang,&nbsp;Ming Wang,&nbsp;Gang Liu,&nbsp;Zhiyu Yang,&nbsp;Le Wang","doi":"10.1159/000524677","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery disease (CAD) is the first leading cause of death worldwide. Therefore, novel therapeutic strategies need to be explored. Numerous publications reported that microRNA-654-5p (miR-654-5p) had anti-cancer activities in various cancers, and it was proven to modulate cell migration, invasion, and proliferation, which played critical roles in CAD. However, its role in CAD is unknown. Thus, we aimed to evaluate the role of miR-654-5p in vascular smooth muscle cells (VSMCs) involved in CAD. A total of 25 CAD patients and 19 healthy individuals were enrolled to evaluate their circulating miR-654-5p levels. miR-654-5p mimic or inhibitor were transfected into human VSMCs to assess their role on cell migration and proliferation. Target genes of miR-654-5p were predicted using TargetScan 7.2 and confirmed by the dual-luciferase reporter assay. miR-654-5p was significantly downregulated in the plasma of CAD patients and tumor necrosis factor-a/platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. miR-654-5p mimic inhibited the proliferation and migration of VSMCs, which could be promoted by miR-654-5p inhibitor. A disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7) was identified as the direct target of miR-654-5p, whose expression could be induced by miR-654-5p inhibitor and decreased by its mimic. In addition, ADAMTS-7 overexpression blocked the inhibitory effect of miR-654-5p on the migration and proliferation of VSMCs. In summary, miR-654-5p inhibits the migration and proliferation of VSMCs by directly targeting ADAMTS-7, and miR-654-5p might serve as a novel therapeutic target for the treatment of CAD.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 4","pages":"285-292"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"miR-654-5p Suppresses Migration and Proliferation of Vascular Smooth Muscle Cells by Targeting ADAMTS-7.\",\"authors\":\"Liu Li,&nbsp;Shuo Wang,&nbsp;Ming Wang,&nbsp;Gang Liu,&nbsp;Zhiyu Yang,&nbsp;Le Wang\",\"doi\":\"10.1159/000524677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronary artery disease (CAD) is the first leading cause of death worldwide. Therefore, novel therapeutic strategies need to be explored. Numerous publications reported that microRNA-654-5p (miR-654-5p) had anti-cancer activities in various cancers, and it was proven to modulate cell migration, invasion, and proliferation, which played critical roles in CAD. However, its role in CAD is unknown. Thus, we aimed to evaluate the role of miR-654-5p in vascular smooth muscle cells (VSMCs) involved in CAD. A total of 25 CAD patients and 19 healthy individuals were enrolled to evaluate their circulating miR-654-5p levels. miR-654-5p mimic or inhibitor were transfected into human VSMCs to assess their role on cell migration and proliferation. Target genes of miR-654-5p were predicted using TargetScan 7.2 and confirmed by the dual-luciferase reporter assay. miR-654-5p was significantly downregulated in the plasma of CAD patients and tumor necrosis factor-a/platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. miR-654-5p mimic inhibited the proliferation and migration of VSMCs, which could be promoted by miR-654-5p inhibitor. A disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7) was identified as the direct target of miR-654-5p, whose expression could be induced by miR-654-5p inhibitor and decreased by its mimic. In addition, ADAMTS-7 overexpression blocked the inhibitory effect of miR-654-5p on the migration and proliferation of VSMCs. In summary, miR-654-5p inhibits the migration and proliferation of VSMCs by directly targeting ADAMTS-7, and miR-654-5p might serve as a novel therapeutic target for the treatment of CAD.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":\"212 4\",\"pages\":\"285-292\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000524677\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000524677","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

冠状动脉疾病(CAD)是全球第一大死亡原因。因此,需要探索新的治疗策略。大量文献报道,microRNA-654-5p (miR-654-5p)在多种癌症中具有抗癌活性,并被证明可调节细胞迁移、侵袭和增殖,在CAD中发挥关键作用。然而,它在CAD中的作用尚不清楚。因此,我们旨在评估miR-654-5p在参与CAD的血管平滑肌细胞(VSMCs)中的作用。共纳入25名CAD患者和19名健康个体,评估其循环miR-654-5p水平。将miR-654-5p模拟物或抑制剂转染到人VSMCs中,以评估其对细胞迁移和增殖的作用。使用TargetScan 7.2预测miR-654-5p的靶基因,并通过双荧光素酶报告基因试验证实。在CAD患者血浆和肿瘤坏死因子-a/血小板衍生生长因子(PDGF)- bb刺激的VSMCs中,miR-654-5p显著下调。miR-654-5p mimic抑制VSMCs的增殖和迁移,miR-654-5p inhibitor可促进VSMCs的增殖和迁移。具有血栓反应蛋白基序的崩解素和金属蛋白酶-7 (ADAMTS-7)被确定为miR-654-5p的直接靶点,其表达可被miR-654-5p抑制剂诱导,并被其模拟物降低。此外,ADAMTS-7过表达阻断了miR-654-5p对VSMCs迁移和增殖的抑制作用。综上所述,miR-654-5p通过直接靶向ADAMTS-7抑制VSMCs的迁移和增殖,miR-654-5p可能成为治疗CAD的新型治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
miR-654-5p Suppresses Migration and Proliferation of Vascular Smooth Muscle Cells by Targeting ADAMTS-7.

Coronary artery disease (CAD) is the first leading cause of death worldwide. Therefore, novel therapeutic strategies need to be explored. Numerous publications reported that microRNA-654-5p (miR-654-5p) had anti-cancer activities in various cancers, and it was proven to modulate cell migration, invasion, and proliferation, which played critical roles in CAD. However, its role in CAD is unknown. Thus, we aimed to evaluate the role of miR-654-5p in vascular smooth muscle cells (VSMCs) involved in CAD. A total of 25 CAD patients and 19 healthy individuals were enrolled to evaluate their circulating miR-654-5p levels. miR-654-5p mimic or inhibitor were transfected into human VSMCs to assess their role on cell migration and proliferation. Target genes of miR-654-5p were predicted using TargetScan 7.2 and confirmed by the dual-luciferase reporter assay. miR-654-5p was significantly downregulated in the plasma of CAD patients and tumor necrosis factor-a/platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. miR-654-5p mimic inhibited the proliferation and migration of VSMCs, which could be promoted by miR-654-5p inhibitor. A disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7) was identified as the direct target of miR-654-5p, whose expression could be induced by miR-654-5p inhibitor and decreased by its mimic. In addition, ADAMTS-7 overexpression blocked the inhibitory effect of miR-654-5p on the migration and proliferation of VSMCs. In summary, miR-654-5p inhibits the migration and proliferation of VSMCs by directly targeting ADAMTS-7, and miR-654-5p might serve as a novel therapeutic target for the treatment of CAD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells Tissues Organs
Cells Tissues Organs 生物-发育生物学
CiteScore
4.90
自引率
3.70%
发文量
45
审稿时长
6-12 weeks
期刊介绍: ''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信