Min Yang, Jennie Ong, Fanju Meng, Feixiang Zhang, Hui Shen, Kerstin Kitt, Tengfei Liu, Wei Tao, Peng Du
{"title":"免疫基质细胞对早孕的时空洞察。","authors":"Min Yang, Jennie Ong, Fanju Meng, Feixiang Zhang, Hui Shen, Kerstin Kitt, Tengfei Liu, Wei Tao, Peng Du","doi":"10.1016/j.cell.2023.08.020","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":" ","pages":"4271-4288.e24"},"PeriodicalIF":45.5000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells.\",\"authors\":\"Min Yang, Jennie Ong, Fanju Meng, Feixiang Zhang, Hui Shen, Kerstin Kitt, Tengfei Liu, Wei Tao, Peng Du\",\"doi\":\"10.1016/j.cell.2023.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.</p>\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\" \",\"pages\":\"4271-4288.e24\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2023.08.020\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2023.08.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells.
Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.