Liu Yang, Yajun Zhang, Xuefei Yu, Danni Li, Na Liu, Xindong Xue, Jianhua Fu
{"title":"早产大鼠缺氧缺血性白质损伤后脑室周围小胶质细胞极化和形态变化伴随着 NLRP3 炎症体介导的神经炎症","authors":"Liu Yang, Yajun Zhang, Xuefei Yu, Danni Li, Na Liu, Xindong Xue, Jianhua Fu","doi":"10.1155/2023/5149306","DOIUrl":null,"url":null,"abstract":"<p><p>White matter damage (WMD) is a primary cause of cerebral palsy and cognitive impairment in preterm infants, and no effective treatments are available. Microglia are a major component of the innate immune system. When activated, they form typical pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes and regulate myelin development and synapse formation. Therefore, they may play a pivotal role in hypoxic-ischemic (HI) WMD. Herein, we investigated neural inflammation and long-term microglia phenotypic polarization in a neonatal rat model of hypoxia-ischemia-induced WMD and elucidated the underlying pathophysiological processes. We exposed 3-day-old (P3) Sprague-Dawley rats to hypoxia (8% oxygen) for 2.5 hr after unilateral common carotid artery ligation. The activation of NLRP3 inflammatory bodies, microglia M1/M2 polarization, myelination, and synaptic development in our model were monitored 7, 14, and 21 days after birth. In addition, the Morris water maze test was performed on postnatal Day 28. We confirmed myelination disturbance in the periventricular white matter, abnormal synaptic development, and behavioral changes in the periventricular area during the development of HI WMD. In addition, we found an association between the occurrence and development of HI WMD and activation of the NLRP3 inflammasome, microglial M1/M2 polarization, and the release of inflammatory factors. NLRP3 inhibition can play an anti-inflammatory role by inhibiting the differentiation of microglia into the M1 phenotype, thereby improving myelination and synapse formation. In conclusion, microglia are key mediators of the inflammatory response and exhibit continuous phenotypic polarization 7-21 days after HI-induced WMD. This finding can potentially lead to a new treatment regimen targeting the phenotypic polarization of microglia early after HI-induced brain injury.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460280/pdf/","citationCount":"0","resultStr":"{\"title\":\"Periventricular Microglia Polarization and Morphological Changes Accompany NLRP3 Inflammasome-Mediated Neuroinflammation after Hypoxic-Ischemic White Matter Damage in Premature Rats.\",\"authors\":\"Liu Yang, Yajun Zhang, Xuefei Yu, Danni Li, Na Liu, Xindong Xue, Jianhua Fu\",\"doi\":\"10.1155/2023/5149306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>White matter damage (WMD) is a primary cause of cerebral palsy and cognitive impairment in preterm infants, and no effective treatments are available. Microglia are a major component of the innate immune system. When activated, they form typical pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes and regulate myelin development and synapse formation. Therefore, they may play a pivotal role in hypoxic-ischemic (HI) WMD. Herein, we investigated neural inflammation and long-term microglia phenotypic polarization in a neonatal rat model of hypoxia-ischemia-induced WMD and elucidated the underlying pathophysiological processes. We exposed 3-day-old (P3) Sprague-Dawley rats to hypoxia (8% oxygen) for 2.5 hr after unilateral common carotid artery ligation. The activation of NLRP3 inflammatory bodies, microglia M1/M2 polarization, myelination, and synaptic development in our model were monitored 7, 14, and 21 days after birth. In addition, the Morris water maze test was performed on postnatal Day 28. We confirmed myelination disturbance in the periventricular white matter, abnormal synaptic development, and behavioral changes in the periventricular area during the development of HI WMD. In addition, we found an association between the occurrence and development of HI WMD and activation of the NLRP3 inflammasome, microglial M1/M2 polarization, and the release of inflammatory factors. NLRP3 inhibition can play an anti-inflammatory role by inhibiting the differentiation of microglia into the M1 phenotype, thereby improving myelination and synapse formation. In conclusion, microglia are key mediators of the inflammatory response and exhibit continuous phenotypic polarization 7-21 days after HI-induced WMD. This finding can potentially lead to a new treatment regimen targeting the phenotypic polarization of microglia early after HI-induced brain injury.</p>\",\"PeriodicalId\":15952,\"journal\":{\"name\":\"Journal of Immunology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460280/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Immunology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5149306\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/5149306","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
白质损伤(WMD)是早产儿脑瘫和认知障碍的主要原因,目前尚无有效的治疗方法。小胶质细胞是先天性免疫系统的主要组成部分。当被激活时,它们会形成典型的促炎(M1)和抗炎(M2)表型,并调节髓鞘发育和突触形成。因此,它们可能在缺氧缺血性(HI)WMD 中发挥关键作用。在此,我们研究了缺氧缺血诱导的WMD新生大鼠模型中的神经炎症和长期小胶质细胞表型极化,并阐明了其潜在的病理生理过程。我们将出生 3 天(P3)的 Sprague-Dawley 大鼠置于单侧颈总动脉结扎后的缺氧(8% 氧气)环境中 2.5 小时。在大鼠出生后 7、14 和 21 天,对其 NLRP3 炎性体的激活、小胶质细胞 M1/M2 极化、髓鞘化和突触发育情况进行了监测。此外,还在出生后第28天进行了莫里斯水迷宫试验。我们证实,在 HI WMD 的发育过程中,脑室周围白质的髓鞘化紊乱、突触发育异常以及脑室周围区域的行为发生了变化。此外,我们还发现 HI WMD 的发生和发展与 NLRP3 炎性体的激活、小胶质细胞 M1/M2 极化和炎性因子的释放有关。抑制 NLRP3 可抑制小胶质细胞向 M1 表型分化,从而改善髓鞘形成和突触形成,从而起到抗炎作用。总之,小胶质细胞是炎症反应的关键介质,在 HI 诱导大规模毁灭性脑损伤后 7-21 天表现出持续的表型极化。这一发现有可能导致针对 HI 诱导的脑损伤后早期小胶质细胞表型极化的新治疗方案。
Periventricular Microglia Polarization and Morphological Changes Accompany NLRP3 Inflammasome-Mediated Neuroinflammation after Hypoxic-Ischemic White Matter Damage in Premature Rats.
White matter damage (WMD) is a primary cause of cerebral palsy and cognitive impairment in preterm infants, and no effective treatments are available. Microglia are a major component of the innate immune system. When activated, they form typical pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes and regulate myelin development and synapse formation. Therefore, they may play a pivotal role in hypoxic-ischemic (HI) WMD. Herein, we investigated neural inflammation and long-term microglia phenotypic polarization in a neonatal rat model of hypoxia-ischemia-induced WMD and elucidated the underlying pathophysiological processes. We exposed 3-day-old (P3) Sprague-Dawley rats to hypoxia (8% oxygen) for 2.5 hr after unilateral common carotid artery ligation. The activation of NLRP3 inflammatory bodies, microglia M1/M2 polarization, myelination, and synaptic development in our model were monitored 7, 14, and 21 days after birth. In addition, the Morris water maze test was performed on postnatal Day 28. We confirmed myelination disturbance in the periventricular white matter, abnormal synaptic development, and behavioral changes in the periventricular area during the development of HI WMD. In addition, we found an association between the occurrence and development of HI WMD and activation of the NLRP3 inflammasome, microglial M1/M2 polarization, and the release of inflammatory factors. NLRP3 inhibition can play an anti-inflammatory role by inhibiting the differentiation of microglia into the M1 phenotype, thereby improving myelination and synapse formation. In conclusion, microglia are key mediators of the inflammatory response and exhibit continuous phenotypic polarization 7-21 days after HI-induced WMD. This finding can potentially lead to a new treatment regimen targeting the phenotypic polarization of microglia early after HI-induced brain injury.
期刊介绍:
Journal of Immunology Research is a peer-reviewed, Open Access journal that provides a platform for scientists and clinicians working in different areas of immunology and therapy. The journal publishes research articles, review articles, as well as clinical studies related to classical immunology, molecular immunology, clinical immunology, cancer immunology, transplantation immunology, immune pathology, immunodeficiency, autoimmune diseases, immune disorders, and immunotherapy.