Yao Rong, Fengyuan Dong, Guiqian Zhang, Mingzheng Tang, Xiashuang Zhao, Yan Zhang, Pengxian Tao, Hui Cai
{"title":"乳酸盐组蛋白乳酸盐化与肿瘤的交叉讨论。","authors":"Yao Rong, Fengyuan Dong, Guiqian Zhang, Mingzheng Tang, Xiashuang Zhao, Yan Zhang, Pengxian Tao, Hui Cai","doi":"10.1002/prca.202200102","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":"17 5","pages":"e2200102"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The crosstalking of lactate-Histone lactylation and tumor.\",\"authors\":\"Yao Rong, Fengyuan Dong, Guiqian Zhang, Mingzheng Tang, Xiashuang Zhao, Yan Zhang, Pengxian Tao, Hui Cai\",\"doi\":\"10.1002/prca.202200102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.</p>\",\"PeriodicalId\":20571,\"journal\":{\"name\":\"PROTEOMICS – Clinical Applications\",\"volume\":\"17 5\",\"pages\":\"e2200102\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROTEOMICS – Clinical Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prca.202200102\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202200102","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The crosstalking of lactate-Histone lactylation and tumor.
Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.