{"title":"基于无人机的收获数据预测可以减少农场粮食损失,提高农民收入。","authors":"Haozhou Wang, Tang Li, Erika Nishida, Yoichiro Kato, Yuya Fukano, Wei Guo","doi":"10.34133/plantphenomics.0086","DOIUrl":null,"url":null,"abstract":"<p><p>On-farm food loss (i.e., grade-out vegetables) is a difficult challenge in sustainable agricultural systems. The simplest method to reduce the number of grade-out vegetables is to monitor and predict the size of all individuals in the vegetable field and determine the optimal harvest date with the smallest grade-out number and highest profit, which is not cost-effective by conventional methods. Here, we developed a full pipeline to accurately estimate and predict every broccoli head size (<i>n</i> > 3,000) automatically and nondestructively using drone remote sensing and image analysis. The individual sizes were fed to the temperature-based growth model and predicted the optimal harvesting date. Two years of field experiments revealed that our pipeline successfully estimated and predicted the head size of all broccolis with high accuracy. We also found that a deviation of only 1 to 2 days from the optimal date can considerably increase grade-out and reduce farmer's profits. This is an unequivocal demonstration of the utility of these approaches to economic crop optimization and minimization of food losses.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0086"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Drone-Based Harvest Data Prediction Can Reduce On-Farm Food Loss and Improve Farmer Income.\",\"authors\":\"Haozhou Wang, Tang Li, Erika Nishida, Yoichiro Kato, Yuya Fukano, Wei Guo\",\"doi\":\"10.34133/plantphenomics.0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On-farm food loss (i.e., grade-out vegetables) is a difficult challenge in sustainable agricultural systems. The simplest method to reduce the number of grade-out vegetables is to monitor and predict the size of all individuals in the vegetable field and determine the optimal harvest date with the smallest grade-out number and highest profit, which is not cost-effective by conventional methods. Here, we developed a full pipeline to accurately estimate and predict every broccoli head size (<i>n</i> > 3,000) automatically and nondestructively using drone remote sensing and image analysis. The individual sizes were fed to the temperature-based growth model and predicted the optimal harvesting date. Two years of field experiments revealed that our pipeline successfully estimated and predicted the head size of all broccolis with high accuracy. We also found that a deviation of only 1 to 2 days from the optimal date can considerably increase grade-out and reduce farmer's profits. This is an unequivocal demonstration of the utility of these approaches to economic crop optimization and minimization of food losses.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"5 \",\"pages\":\"0086\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0086\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0086","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Drone-Based Harvest Data Prediction Can Reduce On-Farm Food Loss and Improve Farmer Income.
On-farm food loss (i.e., grade-out vegetables) is a difficult challenge in sustainable agricultural systems. The simplest method to reduce the number of grade-out vegetables is to monitor and predict the size of all individuals in the vegetable field and determine the optimal harvest date with the smallest grade-out number and highest profit, which is not cost-effective by conventional methods. Here, we developed a full pipeline to accurately estimate and predict every broccoli head size (n > 3,000) automatically and nondestructively using drone remote sensing and image analysis. The individual sizes were fed to the temperature-based growth model and predicted the optimal harvesting date. Two years of field experiments revealed that our pipeline successfully estimated and predicted the head size of all broccolis with high accuracy. We also found that a deviation of only 1 to 2 days from the optimal date can considerably increase grade-out and reduce farmer's profits. This is an unequivocal demonstration of the utility of these approaches to economic crop optimization and minimization of food losses.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.