Alexis Carlier, Sebastien Dandrifosse, Benjamin Dumont, Benoît Mercatoris
{"title":"黄锈病在多大程度上影响遥感氮状态?","authors":"Alexis Carlier, Sebastien Dandrifosse, Benjamin Dumont, Benoît Mercatoris","doi":"10.34133/plantphenomics.0083","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact of wheat yellow rust on reflectance measurements and nitrogen status assessment. A multi-sensor mobile platform was utilized to capture RGB and multispectral images throughout a 2-year fertilization-fungicide trial. To identify disease-induced damage, the SegVeg approach, which combines a U-NET architecture and a pixel-wise classifier, was applied to RGB images, generating a mask capable of distinguishing between healthy and damaged areas of the leaves. The observed proportion of damage in the images demonstrated similar effectiveness to visual scoring methods in explaining grain yield. Furthermore, the study discovered that the disease not only affected reflectance through leaf damage but also influenced the reflectance of healthy areas by disrupting the overall nitrogen status of the plants. This emphasizes the importance of incorporating disease impact into reflectance-based decision support tools to account for its effects on spectral data. This effect was successfully mitigated by employing the NDRE vegetation index calculated exclusively from the healthy portions of the leaves or by incorporating the proportion of damage into the model. However, these findings also highlight the necessity for further research specifically addressing the challenges presented by multiple stresses in crop phenotyping.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0083"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482323/pdf/","citationCount":"0","resultStr":"{\"title\":\"To What Extent Does Yellow Rust Infestation Affect Remotely Sensed Nitrogen Status?\",\"authors\":\"Alexis Carlier, Sebastien Dandrifosse, Benjamin Dumont, Benoît Mercatoris\",\"doi\":\"10.34133/plantphenomics.0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact of wheat yellow rust on reflectance measurements and nitrogen status assessment. A multi-sensor mobile platform was utilized to capture RGB and multispectral images throughout a 2-year fertilization-fungicide trial. To identify disease-induced damage, the SegVeg approach, which combines a U-NET architecture and a pixel-wise classifier, was applied to RGB images, generating a mask capable of distinguishing between healthy and damaged areas of the leaves. The observed proportion of damage in the images demonstrated similar effectiveness to visual scoring methods in explaining grain yield. Furthermore, the study discovered that the disease not only affected reflectance through leaf damage but also influenced the reflectance of healthy areas by disrupting the overall nitrogen status of the plants. This emphasizes the importance of incorporating disease impact into reflectance-based decision support tools to account for its effects on spectral data. This effect was successfully mitigated by employing the NDRE vegetation index calculated exclusively from the healthy portions of the leaves or by incorporating the proportion of damage into the model. However, these findings also highlight the necessity for further research specifically addressing the challenges presented by multiple stresses in crop phenotyping.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"5 \",\"pages\":\"0083\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0083\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0083","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
To What Extent Does Yellow Rust Infestation Affect Remotely Sensed Nitrogen Status?
The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact of wheat yellow rust on reflectance measurements and nitrogen status assessment. A multi-sensor mobile platform was utilized to capture RGB and multispectral images throughout a 2-year fertilization-fungicide trial. To identify disease-induced damage, the SegVeg approach, which combines a U-NET architecture and a pixel-wise classifier, was applied to RGB images, generating a mask capable of distinguishing between healthy and damaged areas of the leaves. The observed proportion of damage in the images demonstrated similar effectiveness to visual scoring methods in explaining grain yield. Furthermore, the study discovered that the disease not only affected reflectance through leaf damage but also influenced the reflectance of healthy areas by disrupting the overall nitrogen status of the plants. This emphasizes the importance of incorporating disease impact into reflectance-based decision support tools to account for its effects on spectral data. This effect was successfully mitigated by employing the NDRE vegetation index calculated exclusively from the healthy portions of the leaves or by incorporating the proportion of damage into the model. However, these findings also highlight the necessity for further research specifically addressing the challenges presented by multiple stresses in crop phenotyping.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.