在3D球体中从分化的人类诱导多能干细胞产生β样细胞亚型。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Lisa Morisseau, Fumiya Tokito, Stéphane Poulain, Valerie Plaisance, Valerie Pawlowski, Soo Hyeon Kim, Cécile Legallais, Rachid Jellali, Yasuyuki Sakai, Amar Abderrahmani and Eric Leclerc
{"title":"在3D球体中从分化的人类诱导多能干细胞产生β样细胞亚型。","authors":"Lisa Morisseau, Fumiya Tokito, Stéphane Poulain, Valerie Plaisance, Valerie Pawlowski, Soo Hyeon Kim, Cécile Legallais, Rachid Jellali, Yasuyuki Sakai, Amar Abderrahmani and Eric Leclerc","doi":"10.1039/D3MO00050H","DOIUrl":null,"url":null,"abstract":"<p >Since the identification of four different pancreatic β-cell subtypes and bi-hormomal cells playing a role in the diabetes pathogenesis, the search for <em>in vitro</em> models that mimics such cells heterogeneity became a key priority in experimental and clinical diabetology. We investigated the potential of human induced pluripotent stem cells to lead to the development of the different β-cells subtypes in honeycomb microwell-based 3D spheroids. The glucose-stimulated insulin secretion confirmed the spheroids functionality. Then, we performed a single cell RNA sequencing of the spheroids. Using a knowledge-based analysis with a stringency on the pancreatic markers, we extracted the β-cells INS+/UCN3+ subtype (11%; β1-like cells), the INS+/ST8SIA1+/CD9− subtype (3%, β3-like cells) and INS+/CD9+/ST8SIA1-subtype (1%; β2-like cells) consistently with literature findings. We did not detect the INS+/ST8SIA1+/CD9+ cells (β4-like cells). Then, we also identified four bi-hormonal cells subpopulations including δ-like cells (INS+/SST+, 6%), γ-like cells (INS+/PPY+, 3%), α-like-cells (INS+/GCG+, 6%) and ε-like-cells (INS+/GHRL+, 2%). Using data-driven clustering, we extracted four progenitors’ subpopulations (with the lower level of INS gene) that included one population highly expressing inhibin genes (INHBA+/INHBB+), one population highly expressing KCNJ3+/TPH1+, one population expressing hepatocyte-like lineage markers (HNF1A+/AFP+), and one population expressing stem-like cell pancreatic progenitor markers (SOX2+/NEUROG3+). Furthermore, among the cycling population we found a large number of REST+ cells and CD9+ cells (CD9+/SPARC+/REST+). Our data confirm that our differentiation leads to large β-cell heterogeneity, which can be used for investigating β-cells plasticity under physiological and pathophysiological conditions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of β-like cell subtypes from differentiated human induced pluripotent stem cells in 3D spheroids†\",\"authors\":\"Lisa Morisseau, Fumiya Tokito, Stéphane Poulain, Valerie Plaisance, Valerie Pawlowski, Soo Hyeon Kim, Cécile Legallais, Rachid Jellali, Yasuyuki Sakai, Amar Abderrahmani and Eric Leclerc\",\"doi\":\"10.1039/D3MO00050H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Since the identification of four different pancreatic β-cell subtypes and bi-hormomal cells playing a role in the diabetes pathogenesis, the search for <em>in vitro</em> models that mimics such cells heterogeneity became a key priority in experimental and clinical diabetology. We investigated the potential of human induced pluripotent stem cells to lead to the development of the different β-cells subtypes in honeycomb microwell-based 3D spheroids. The glucose-stimulated insulin secretion confirmed the spheroids functionality. Then, we performed a single cell RNA sequencing of the spheroids. Using a knowledge-based analysis with a stringency on the pancreatic markers, we extracted the β-cells INS+/UCN3+ subtype (11%; β1-like cells), the INS+/ST8SIA1+/CD9− subtype (3%, β3-like cells) and INS+/CD9+/ST8SIA1-subtype (1%; β2-like cells) consistently with literature findings. We did not detect the INS+/ST8SIA1+/CD9+ cells (β4-like cells). Then, we also identified four bi-hormonal cells subpopulations including δ-like cells (INS+/SST+, 6%), γ-like cells (INS+/PPY+, 3%), α-like-cells (INS+/GCG+, 6%) and ε-like-cells (INS+/GHRL+, 2%). Using data-driven clustering, we extracted four progenitors’ subpopulations (with the lower level of INS gene) that included one population highly expressing inhibin genes (INHBA+/INHBB+), one population highly expressing KCNJ3+/TPH1+, one population expressing hepatocyte-like lineage markers (HNF1A+/AFP+), and one population expressing stem-like cell pancreatic progenitor markers (SOX2+/NEUROG3+). Furthermore, among the cycling population we found a large number of REST+ cells and CD9+ cells (CD9+/SPARC+/REST+). Our data confirm that our differentiation leads to large β-cell heterogeneity, which can be used for investigating β-cells plasticity under physiological and pathophysiological conditions.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d3mo00050h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d3mo00050h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于鉴定了四种不同的胰腺β细胞亚型和在糖尿病发病机制中发挥作用的双激素细胞,寻找模拟这种细胞异质性的体外模型成为实验和临床糖尿病的关键优先事项。我们研究了人类诱导多能干细胞在基于蜂窝微孔的3D球体中导致不同β细胞亚型发展的潜力。葡萄糖刺激的胰岛素分泌证实了球体的功能。然后,我们对球体进行了单细胞RNA测序。使用严格针对胰腺标志物的基于知识的分析,我们提取了β细胞INS+/UCN3+亚型(11%;β1样细胞)、INS+/ST8SIA1+/CD9-亚型(3%,β3样细胞)和INS+/CD9+/ST8SIA1亚型(1%;β2样细胞),与文献结果一致。未检测到INS+/ST8SIA1+/CD9+细胞(β4-样细胞)。然后,我们还鉴定了四个双激素细胞亚群,包括δ样细胞(INS+/SST+,6%)、γ样细胞(INS+/PPY+,3%)、α样细胞(INS+/GCG+,6%,和ε样细胞(INS+/GHRL+,2%)。使用数据驱动聚类,我们提取了四个祖细胞的亚群(具有较低水平的INS基因),其中包括一个高表达抑制素基因的群体(INHBA+/INHBB+)、一个高度表达KCNJ3+/TPH1+的群体、一个表达肝细胞样谱系标记物的群体(HNF1A+/AFP+),和一个表达干细胞样胰腺祖细胞标志物(SOX2+/NEUROG3+)的群体。此外,在循环人群中,我们发现了大量的REST+细胞和CD9+细胞(CD9+/SPARC+/REST+)。我们的数据证实,我们的分化导致了巨大的β细胞异质性,这可用于研究β细胞在生理和病理生理条件下的可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generation of β-like cell subtypes from differentiated human induced pluripotent stem cells in 3D spheroids†

Generation of β-like cell subtypes from differentiated human induced pluripotent stem cells in 3D spheroids†

Since the identification of four different pancreatic β-cell subtypes and bi-hormomal cells playing a role in the diabetes pathogenesis, the search for in vitro models that mimics such cells heterogeneity became a key priority in experimental and clinical diabetology. We investigated the potential of human induced pluripotent stem cells to lead to the development of the different β-cells subtypes in honeycomb microwell-based 3D spheroids. The glucose-stimulated insulin secretion confirmed the spheroids functionality. Then, we performed a single cell RNA sequencing of the spheroids. Using a knowledge-based analysis with a stringency on the pancreatic markers, we extracted the β-cells INS+/UCN3+ subtype (11%; β1-like cells), the INS+/ST8SIA1+/CD9− subtype (3%, β3-like cells) and INS+/CD9+/ST8SIA1-subtype (1%; β2-like cells) consistently with literature findings. We did not detect the INS+/ST8SIA1+/CD9+ cells (β4-like cells). Then, we also identified four bi-hormonal cells subpopulations including δ-like cells (INS+/SST+, 6%), γ-like cells (INS+/PPY+, 3%), α-like-cells (INS+/GCG+, 6%) and ε-like-cells (INS+/GHRL+, 2%). Using data-driven clustering, we extracted four progenitors’ subpopulations (with the lower level of INS gene) that included one population highly expressing inhibin genes (INHBA+/INHBB+), one population highly expressing KCNJ3+/TPH1+, one population expressing hepatocyte-like lineage markers (HNF1A+/AFP+), and one population expressing stem-like cell pancreatic progenitor markers (SOX2+/NEUROG3+). Furthermore, among the cycling population we found a large number of REST+ cells and CD9+ cells (CD9+/SPARC+/REST+). Our data confirm that our differentiation leads to large β-cell heterogeneity, which can be used for investigating β-cells plasticity under physiological and pathophysiological conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信