S. Rahmanian , T.C. Slaba , L.A. Braby , S.R. Santa Maria , S. Bhattacharya , T. Straume
{"title":"美国国家航空航天局生物哨兵任务的银河宇宙射线环境预测。","authors":"S. Rahmanian , T.C. Slaba , L.A. Braby , S.R. Santa Maria , S. Bhattacharya , T. Straume","doi":"10.1016/j.lssr.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>BioSentinel is a nanosatellite deployed from Artemis-I designed to conduct in-situ biological measurements on yeast cells in the deep </span>space radiation<span><span> environment. Along with the primary goal of measuring damage and response in cells exposed during spaceflight, on-board active dosimetry will provide measurements of the radiation field encountered behind moderate shielding provided by the BioSentinel housing and internal components. The measurements are particularly important to enable interpretation of biological observations but also provide an opportunity to validate integrated </span>computational models used to calculate radiation environments. In this work, models are used to predict the galactic cosmic ray exposure anticipated for the BioSentinel payload and on-board dosimeter. The model calculations presented herein were completed prior to the Artemis-I launch on November 16, 2022, and therefore represent actual predictions (i.e., unbiased by </span></span><em>a priori</em> knowledge of on-board measurements). Such time-forward predictions are rarely performed for space radiation applications due to limitations of environmental models, but truly independent model validation will be possible in the future when on-board measurements become available. The method used to facilitate future projections within an existing GCR (galactic cosmic ray) environmental model is described, and projection uncertainties are quantified and contextualized.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"38 ","pages":"Pages 19-28"},"PeriodicalIF":2.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Galactic cosmic ray environment predictions for the NASA BioSentinel mission\",\"authors\":\"S. Rahmanian , T.C. Slaba , L.A. Braby , S.R. Santa Maria , S. Bhattacharya , T. Straume\",\"doi\":\"10.1016/j.lssr.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>BioSentinel is a nanosatellite deployed from Artemis-I designed to conduct in-situ biological measurements on yeast cells in the deep </span>space radiation<span><span> environment. Along with the primary goal of measuring damage and response in cells exposed during spaceflight, on-board active dosimetry will provide measurements of the radiation field encountered behind moderate shielding provided by the BioSentinel housing and internal components. The measurements are particularly important to enable interpretation of biological observations but also provide an opportunity to validate integrated </span>computational models used to calculate radiation environments. In this work, models are used to predict the galactic cosmic ray exposure anticipated for the BioSentinel payload and on-board dosimeter. The model calculations presented herein were completed prior to the Artemis-I launch on November 16, 2022, and therefore represent actual predictions (i.e., unbiased by </span></span><em>a priori</em> knowledge of on-board measurements). Such time-forward predictions are rarely performed for space radiation applications due to limitations of environmental models, but truly independent model validation will be possible in the future when on-board measurements become available. The method used to facilitate future projections within an existing GCR (galactic cosmic ray) environmental model is described, and projection uncertainties are quantified and contextualized.</p></div>\",\"PeriodicalId\":18029,\"journal\":{\"name\":\"Life Sciences in Space Research\",\"volume\":\"38 \",\"pages\":\"Pages 19-28\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Sciences in Space Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221455242300041X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221455242300041X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Galactic cosmic ray environment predictions for the NASA BioSentinel mission
BioSentinel is a nanosatellite deployed from Artemis-I designed to conduct in-situ biological measurements on yeast cells in the deep space radiation environment. Along with the primary goal of measuring damage and response in cells exposed during spaceflight, on-board active dosimetry will provide measurements of the radiation field encountered behind moderate shielding provided by the BioSentinel housing and internal components. The measurements are particularly important to enable interpretation of biological observations but also provide an opportunity to validate integrated computational models used to calculate radiation environments. In this work, models are used to predict the galactic cosmic ray exposure anticipated for the BioSentinel payload and on-board dosimeter. The model calculations presented herein were completed prior to the Artemis-I launch on November 16, 2022, and therefore represent actual predictions (i.e., unbiased by a priori knowledge of on-board measurements). Such time-forward predictions are rarely performed for space radiation applications due to limitations of environmental models, but truly independent model validation will be possible in the future when on-board measurements become available. The method used to facilitate future projections within an existing GCR (galactic cosmic ray) environmental model is described, and projection uncertainties are quantified and contextualized.
期刊介绍:
Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research.
Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.