{"title":"海草植被区附着颗粒的微生物群落结构因与海草床的距离不同而不同。","authors":"Md Mehedi Iqbal, Masahiko Nishimura, Masayoshi Sano, Susumu Yoshizawa","doi":"10.1264/jsme2.ME23013","DOIUrl":null,"url":null,"abstract":"<p><p>Zostera marina (eelgrass) is a submerged flowering plant often found in the coastal areas of Japan. Large amounts of suspended particles form in highly productive environments, such as eelgrass beds, and the behavior of these particles is expected to affect the surrounding microbial community. We investigated the microbial community structure of suspended particles in three eelgrass fields (Ikuno-Shima Is., Mutsu Bay, and Nanao Bay) and inferred the formation and dynamics of suspended particles from a microbial community structure ana-lysis. Seawater samples were collected directly above each eelgrass bed (eelgrass-covering) and from locations dozens of meters away from the eelgrass bed (bare-ground). In consideration of the two different lifestyles of marine microbes, microbial communities were obtained from particle-attached (PA) and free-living (FL) states. Differences in microbial diversity and community structures were observed between PA and FL in all eelgrass beds. The FL microbial community was similar between the two sampling points (eelgrass-covering and bare-ground), whereas a significant difference was noted in the microbial community structure of suspended particles between the two sampling points. This difference appeared to be due to the supply of organic matter from the eelgrass sea ground and leaf-attached detritus produced by microbial activity. In addition, the classes Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria were abundant in the PA and FL fractions. Furthermore, many sequences of the key groups (e.g., Planctomycetes and Verrucomicrobia) were exclusively detected in the PA fraction, in which they may circulate nutrients. The present results provide insights into the microbial communities of suspended particles and provide the first step towards understanding their biogeochemical impact on the eelgrass bed.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"38 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Particle-attached Microbes in Eelgrass Vegetation Areas Differ in Community Structure Depending on the Distance from the Eelgrass Bed.\",\"authors\":\"Md Mehedi Iqbal, Masahiko Nishimura, Masayoshi Sano, Susumu Yoshizawa\",\"doi\":\"10.1264/jsme2.ME23013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zostera marina (eelgrass) is a submerged flowering plant often found in the coastal areas of Japan. Large amounts of suspended particles form in highly productive environments, such as eelgrass beds, and the behavior of these particles is expected to affect the surrounding microbial community. We investigated the microbial community structure of suspended particles in three eelgrass fields (Ikuno-Shima Is., Mutsu Bay, and Nanao Bay) and inferred the formation and dynamics of suspended particles from a microbial community structure ana-lysis. Seawater samples were collected directly above each eelgrass bed (eelgrass-covering) and from locations dozens of meters away from the eelgrass bed (bare-ground). In consideration of the two different lifestyles of marine microbes, microbial communities were obtained from particle-attached (PA) and free-living (FL) states. Differences in microbial diversity and community structures were observed between PA and FL in all eelgrass beds. The FL microbial community was similar between the two sampling points (eelgrass-covering and bare-ground), whereas a significant difference was noted in the microbial community structure of suspended particles between the two sampling points. This difference appeared to be due to the supply of organic matter from the eelgrass sea ground and leaf-attached detritus produced by microbial activity. In addition, the classes Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria were abundant in the PA and FL fractions. Furthermore, many sequences of the key groups (e.g., Planctomycetes and Verrucomicrobia) were exclusively detected in the PA fraction, in which they may circulate nutrients. The present results provide insights into the microbial communities of suspended particles and provide the first step towards understanding their biogeochemical impact on the eelgrass bed.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME23013\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME23013","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Particle-attached Microbes in Eelgrass Vegetation Areas Differ in Community Structure Depending on the Distance from the Eelgrass Bed.
Zostera marina (eelgrass) is a submerged flowering plant often found in the coastal areas of Japan. Large amounts of suspended particles form in highly productive environments, such as eelgrass beds, and the behavior of these particles is expected to affect the surrounding microbial community. We investigated the microbial community structure of suspended particles in three eelgrass fields (Ikuno-Shima Is., Mutsu Bay, and Nanao Bay) and inferred the formation and dynamics of suspended particles from a microbial community structure ana-lysis. Seawater samples were collected directly above each eelgrass bed (eelgrass-covering) and from locations dozens of meters away from the eelgrass bed (bare-ground). In consideration of the two different lifestyles of marine microbes, microbial communities were obtained from particle-attached (PA) and free-living (FL) states. Differences in microbial diversity and community structures were observed between PA and FL in all eelgrass beds. The FL microbial community was similar between the two sampling points (eelgrass-covering and bare-ground), whereas a significant difference was noted in the microbial community structure of suspended particles between the two sampling points. This difference appeared to be due to the supply of organic matter from the eelgrass sea ground and leaf-attached detritus produced by microbial activity. In addition, the classes Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria were abundant in the PA and FL fractions. Furthermore, many sequences of the key groups (e.g., Planctomycetes and Verrucomicrobia) were exclusively detected in the PA fraction, in which they may circulate nutrients. The present results provide insights into the microbial communities of suspended particles and provide the first step towards understanding their biogeochemical impact on the eelgrass bed.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.