Kenichiro Yambe, Takuro Ishii, Billy Y S Yiu, Alfred C H Yu, Tomoyuki Endo, Yoshifumi Saijo
{"title":"在胸主动脉模型中进行静脉-动脉体外膜氧合时的超声矢量流成像。","authors":"Kenichiro Yambe, Takuro Ishii, Billy Y S Yiu, Alfred C H Yu, Tomoyuki Endo, Yoshifumi Saijo","doi":"10.1007/s10047-023-01413-z","DOIUrl":null,"url":null,"abstract":"<p><p>In veno-arterial extracorporeal membrane oxygenation (VA-ECMO) treatment, the mixing zone is a key hemodynamic factor that determines the efficacy of the treatment. This study aimed to evaluate the applicability of a novel ultrasound technique called vector flow imaging (VFI) for visualizing complex flow patterns in an aorta phantom under VA-ECMO settings. VFI experiments were performed to image aortic hemodynamics under VA-ECMO treatment simulated in an anthropomorphic thoracic aorta phantom using a pulsatile pump (cardiac output: 2.7 L/min) and an ECMO pump with two different flow rates, 0.35 L/min and 1.0 L/min. The cardiac cycle of hemodynamics in the ascending aorta, aortic arch, and descending aorta was visualized, and the spatio-temporal dynamics of flow vectors were analyzed. VFI successfully visualized dynamic flow patterns in the aorta phantom. When the flow rate of the ECMO pump increased, ECMO flow was more dominant than cardiac output in the diastole phase, and the speed of cardiac output was suppressed in the systole phase. Vortex flow patterns were also detected in the ascending aorta and the arch under both ECMO flow rate conditions. The VFI technique may provide new insights into aortic hemodynamics and facilitates effective and safe VA-ECMO treatment.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":" ","pages":"230-237"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345325/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrasound vector flow imaging during veno-arterial extracorporeal membrane oxygenation in a thoracic aorta model.\",\"authors\":\"Kenichiro Yambe, Takuro Ishii, Billy Y S Yiu, Alfred C H Yu, Tomoyuki Endo, Yoshifumi Saijo\",\"doi\":\"10.1007/s10047-023-01413-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In veno-arterial extracorporeal membrane oxygenation (VA-ECMO) treatment, the mixing zone is a key hemodynamic factor that determines the efficacy of the treatment. This study aimed to evaluate the applicability of a novel ultrasound technique called vector flow imaging (VFI) for visualizing complex flow patterns in an aorta phantom under VA-ECMO settings. VFI experiments were performed to image aortic hemodynamics under VA-ECMO treatment simulated in an anthropomorphic thoracic aorta phantom using a pulsatile pump (cardiac output: 2.7 L/min) and an ECMO pump with two different flow rates, 0.35 L/min and 1.0 L/min. The cardiac cycle of hemodynamics in the ascending aorta, aortic arch, and descending aorta was visualized, and the spatio-temporal dynamics of flow vectors were analyzed. VFI successfully visualized dynamic flow patterns in the aorta phantom. When the flow rate of the ECMO pump increased, ECMO flow was more dominant than cardiac output in the diastole phase, and the speed of cardiac output was suppressed in the systole phase. Vortex flow patterns were also detected in the ascending aorta and the arch under both ECMO flow rate conditions. The VFI technique may provide new insights into aortic hemodynamics and facilitates effective and safe VA-ECMO treatment.</p>\",\"PeriodicalId\":15177,\"journal\":{\"name\":\"Journal of Artificial Organs\",\"volume\":\" \",\"pages\":\"230-237\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Organs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10047-023-01413-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-023-01413-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Ultrasound vector flow imaging during veno-arterial extracorporeal membrane oxygenation in a thoracic aorta model.
In veno-arterial extracorporeal membrane oxygenation (VA-ECMO) treatment, the mixing zone is a key hemodynamic factor that determines the efficacy of the treatment. This study aimed to evaluate the applicability of a novel ultrasound technique called vector flow imaging (VFI) for visualizing complex flow patterns in an aorta phantom under VA-ECMO settings. VFI experiments were performed to image aortic hemodynamics under VA-ECMO treatment simulated in an anthropomorphic thoracic aorta phantom using a pulsatile pump (cardiac output: 2.7 L/min) and an ECMO pump with two different flow rates, 0.35 L/min and 1.0 L/min. The cardiac cycle of hemodynamics in the ascending aorta, aortic arch, and descending aorta was visualized, and the spatio-temporal dynamics of flow vectors were analyzed. VFI successfully visualized dynamic flow patterns in the aorta phantom. When the flow rate of the ECMO pump increased, ECMO flow was more dominant than cardiac output in the diastole phase, and the speed of cardiac output was suppressed in the systole phase. Vortex flow patterns were also detected in the ascending aorta and the arch under both ECMO flow rate conditions. The VFI technique may provide new insights into aortic hemodynamics and facilitates effective and safe VA-ECMO treatment.
期刊介绍:
The aim of the Journal of Artificial Organs is to introduce to colleagues worldwide a broad spectrum of important new achievements in the field of artificial organs, ranging from fundamental research to clinical applications. The scope of the Journal of Artificial Organs encompasses but is not restricted to blood purification, cardiovascular intervention, biomaterials, and artificial metabolic organs. Additionally, the journal will cover technical and industrial innovations. Membership in the Japanese Society for Artificial Organs is not a prerequisite for submission.