{"title":"人类子宫内膜的单细胞 RNA 转录组揭示了与反复着床失败有关的上皮特征。","authors":"Hong Zhang, Chanyu Zhang, Shen Zhang","doi":"10.1002/adbi.202300110","DOIUrl":null,"url":null,"abstract":"<p>Recurrent implantation failure (RIF) remains a complex and poorly characterized disorder despite significant advancements in assisted reproductive technology. This study utilizes single-cell transcriptome sequencing (scRNA-seq) to characterize the mid-secretory endometrium of RIF patients. Stromal fibroblast-enriched and epithelium-enriched populations are collected using a two-step dissociation process. After quality control, 25,315 individual cells from 3 RIF patients are analyzed. The analysis identifies 12 distinct cell types, including 6 subtypes of epithelial cells. Significantly, the study reveals the replacement of glandular epithelia with MAP2K6<sup>+</sup>EPCAM<sup>DIM</sup> epithelia in the endometrial glands of RIF patients. Furthermore, the study demonstrates that endometrial gland organoids derived from RIF patients exhibit diminished responses to sex steroids compared to the controls. Single-cell regulatory network inference and clustering (SCENIC) analysis identifies cell-specific <i>cis</i>-regulatory elements and constructed regulatory networks in both groups, showing alterations gene-regulatory networks in RIF patients. Cell-cell communication analysis distinguishes intercellular communication between the two groups, shedding light on disrupted cellular interactions associated with RIF. In summary, these findings provide valuable insights into the cellular and molecular mechanisms underlying RIF, highlighting the roles of epithelial cells in the implantation process.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"8 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Cell RNA Transcriptome of the Human Endometrium Reveals Epithelial Characterizations Associated with Recurrent Implantation Failure\",\"authors\":\"Hong Zhang, Chanyu Zhang, Shen Zhang\",\"doi\":\"10.1002/adbi.202300110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recurrent implantation failure (RIF) remains a complex and poorly characterized disorder despite significant advancements in assisted reproductive technology. This study utilizes single-cell transcriptome sequencing (scRNA-seq) to characterize the mid-secretory endometrium of RIF patients. Stromal fibroblast-enriched and epithelium-enriched populations are collected using a two-step dissociation process. After quality control, 25,315 individual cells from 3 RIF patients are analyzed. The analysis identifies 12 distinct cell types, including 6 subtypes of epithelial cells. Significantly, the study reveals the replacement of glandular epithelia with MAP2K6<sup>+</sup>EPCAM<sup>DIM</sup> epithelia in the endometrial glands of RIF patients. Furthermore, the study demonstrates that endometrial gland organoids derived from RIF patients exhibit diminished responses to sex steroids compared to the controls. Single-cell regulatory network inference and clustering (SCENIC) analysis identifies cell-specific <i>cis</i>-regulatory elements and constructed regulatory networks in both groups, showing alterations gene-regulatory networks in RIF patients. Cell-cell communication analysis distinguishes intercellular communication between the two groups, shedding light on disrupted cellular interactions associated with RIF. In summary, these findings provide valuable insights into the cellular and molecular mechanisms underlying RIF, highlighting the roles of epithelial cells in the implantation process.</p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202300110\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202300110","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Single-Cell RNA Transcriptome of the Human Endometrium Reveals Epithelial Characterizations Associated with Recurrent Implantation Failure
Recurrent implantation failure (RIF) remains a complex and poorly characterized disorder despite significant advancements in assisted reproductive technology. This study utilizes single-cell transcriptome sequencing (scRNA-seq) to characterize the mid-secretory endometrium of RIF patients. Stromal fibroblast-enriched and epithelium-enriched populations are collected using a two-step dissociation process. After quality control, 25,315 individual cells from 3 RIF patients are analyzed. The analysis identifies 12 distinct cell types, including 6 subtypes of epithelial cells. Significantly, the study reveals the replacement of glandular epithelia with MAP2K6+EPCAMDIM epithelia in the endometrial glands of RIF patients. Furthermore, the study demonstrates that endometrial gland organoids derived from RIF patients exhibit diminished responses to sex steroids compared to the controls. Single-cell regulatory network inference and clustering (SCENIC) analysis identifies cell-specific cis-regulatory elements and constructed regulatory networks in both groups, showing alterations gene-regulatory networks in RIF patients. Cell-cell communication analysis distinguishes intercellular communication between the two groups, shedding light on disrupted cellular interactions associated with RIF. In summary, these findings provide valuable insights into the cellular and molecular mechanisms underlying RIF, highlighting the roles of epithelial cells in the implantation process.