Carlos Osorio Quero, Daniel Durini, Jose Rangel-Magdaleno, Jose Martinez-Carranza, Ruben Ramos-Garcia
{"title":"近红外单像素成像图像的深度学习模糊校正。","authors":"Carlos Osorio Quero, Daniel Durini, Jose Rangel-Magdaleno, Jose Martinez-Carranza, Ruben Ramos-Garcia","doi":"10.1364/JOSAA.488549","DOIUrl":null,"url":null,"abstract":"<p><p>In challenging scenarios characterized by low-photon conditions or the presence of scattering effects caused by rain, fog, or smoke, conventional silicon-based cameras face limitations in capturing visible images. This often leads to reduced visibility and image contrast. However, using near-infrared (NIR) light within the range of 850-1550 nm offers the advantage of reduced scattering by microparticles, making it an attractive option for imaging in such conditions. Despite NIR's advantages, NIR cameras can be prohibitively expensive. To address this issue, we propose a vision system that leverages NIR active illumination single-pixel imaging (SPI) operating at 1550 nm combined with time of flight operating at 850 nm for 2D image reconstruction, specifically targeting rainy conditions. We incorporate diffusion models into the proposed system to enhance the quality of NIR-SPI images. By simulating various conditions of background illumination and droplet size in an outdoor laboratory scenario, we assess the feasibility of utilizing NIR-SPI as a vision sensor in challenging outdoor environments.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"40 8","pages":"1491-1499"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning blurring correction of images obtained from NIR single-pixel imaging.\",\"authors\":\"Carlos Osorio Quero, Daniel Durini, Jose Rangel-Magdaleno, Jose Martinez-Carranza, Ruben Ramos-Garcia\",\"doi\":\"10.1364/JOSAA.488549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In challenging scenarios characterized by low-photon conditions or the presence of scattering effects caused by rain, fog, or smoke, conventional silicon-based cameras face limitations in capturing visible images. This often leads to reduced visibility and image contrast. However, using near-infrared (NIR) light within the range of 850-1550 nm offers the advantage of reduced scattering by microparticles, making it an attractive option for imaging in such conditions. Despite NIR's advantages, NIR cameras can be prohibitively expensive. To address this issue, we propose a vision system that leverages NIR active illumination single-pixel imaging (SPI) operating at 1550 nm combined with time of flight operating at 850 nm for 2D image reconstruction, specifically targeting rainy conditions. We incorporate diffusion models into the proposed system to enhance the quality of NIR-SPI images. By simulating various conditions of background illumination and droplet size in an outdoor laboratory scenario, we assess the feasibility of utilizing NIR-SPI as a vision sensor in challenging outdoor environments.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":\"40 8\",\"pages\":\"1491-1499\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.488549\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.488549","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Deep-learning blurring correction of images obtained from NIR single-pixel imaging.
In challenging scenarios characterized by low-photon conditions or the presence of scattering effects caused by rain, fog, or smoke, conventional silicon-based cameras face limitations in capturing visible images. This often leads to reduced visibility and image contrast. However, using near-infrared (NIR) light within the range of 850-1550 nm offers the advantage of reduced scattering by microparticles, making it an attractive option for imaging in such conditions. Despite NIR's advantages, NIR cameras can be prohibitively expensive. To address this issue, we propose a vision system that leverages NIR active illumination single-pixel imaging (SPI) operating at 1550 nm combined with time of flight operating at 850 nm for 2D image reconstruction, specifically targeting rainy conditions. We incorporate diffusion models into the proposed system to enhance the quality of NIR-SPI images. By simulating various conditions of background illumination and droplet size in an outdoor laboratory scenario, we assess the feasibility of utilizing NIR-SPI as a vision sensor in challenging outdoor environments.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.