{"title":"脑室内注射链脲佐菌素致痛致敏的长期随访。","authors":"Farzaneh Rostami, Zohreh Abbasi, Masoud Fereidoni","doi":"10.1097/FBP.0000000000000701","DOIUrl":null,"url":null,"abstract":"<p><p>Age is known to be the major risk factor for both pain sensation and sporadic Alzheimer's disease (sAD). Pain management in AD is a critical health condition. However, assessing pain in sAD patients is challenging. The intracerebroventricularly injected streptozotocin (icv-STZ) rat model of sAD has been brought to the fore as a hopefully suitable model that could mimic some features of sAD. However, the exact mechanism by which this agent may induce AD-like pathology is largely unknown. In some studies, analgesic drugs have been suggested as possible prevention of AD and icv-STZ-induced AD-like pathology. Therefore, this study used formalin and tail-flick tests to investigate whether different doses of icv-STZ injections could affect acute and inflammatory pain sensation and edema volume over time. Behavioral responses were observed at four testing time points (1, 2.5, 3.5, and 6 months postinjection). The results indicate that icv-STZ was able to significantly decrease the animals' formalin pain threshold in both a time- and dose-dependent manner. Formalin-induced acute and chronic pain scores of animals treated with streptozotocin 3 mg/kg (STZ3) increased dramatically 2.5 months after injection and persisted thereafter. The augmentation in pain score induced by streptozotocin 1 mg/kg (STZ1) was observed from 3.5 months after STZ injection. However, the effect of streptozotocin 0.5 mg/kg (STZ0.5) was NS until 6 months after injection. However, formalin-induced paw edema occurred with a longer delay and was not detectable in STZ0.5-treated animals. In addition, only STZ3-treated animals significantly reduced the thermal pain threshold of animals 6 months after injection. These observations indicate that icv-STZ can sensitize central and/or peripheral receptors to pain. The effect of STZ is dose- and time-dependent. AD-like pathology induced by icv-STZ could be partially activated via pain processing pathways. Therefore, anti-inflammatory agents could alleviate AD-like symptoms via pain treatments.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term follow-up of intracerebroventricular injection of streptozotocin-inducing pain sensitization.\",\"authors\":\"Farzaneh Rostami, Zohreh Abbasi, Masoud Fereidoni\",\"doi\":\"10.1097/FBP.0000000000000701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age is known to be the major risk factor for both pain sensation and sporadic Alzheimer's disease (sAD). Pain management in AD is a critical health condition. However, assessing pain in sAD patients is challenging. The intracerebroventricularly injected streptozotocin (icv-STZ) rat model of sAD has been brought to the fore as a hopefully suitable model that could mimic some features of sAD. However, the exact mechanism by which this agent may induce AD-like pathology is largely unknown. In some studies, analgesic drugs have been suggested as possible prevention of AD and icv-STZ-induced AD-like pathology. Therefore, this study used formalin and tail-flick tests to investigate whether different doses of icv-STZ injections could affect acute and inflammatory pain sensation and edema volume over time. Behavioral responses were observed at four testing time points (1, 2.5, 3.5, and 6 months postinjection). The results indicate that icv-STZ was able to significantly decrease the animals' formalin pain threshold in both a time- and dose-dependent manner. Formalin-induced acute and chronic pain scores of animals treated with streptozotocin 3 mg/kg (STZ3) increased dramatically 2.5 months after injection and persisted thereafter. The augmentation in pain score induced by streptozotocin 1 mg/kg (STZ1) was observed from 3.5 months after STZ injection. However, the effect of streptozotocin 0.5 mg/kg (STZ0.5) was NS until 6 months after injection. However, formalin-induced paw edema occurred with a longer delay and was not detectable in STZ0.5-treated animals. In addition, only STZ3-treated animals significantly reduced the thermal pain threshold of animals 6 months after injection. These observations indicate that icv-STZ can sensitize central and/or peripheral receptors to pain. The effect of STZ is dose- and time-dependent. AD-like pathology induced by icv-STZ could be partially activated via pain processing pathways. Therefore, anti-inflammatory agents could alleviate AD-like symptoms via pain treatments.</p>\",\"PeriodicalId\":8832,\"journal\":{\"name\":\"Behavioural Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Pharmacology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1097/FBP.0000000000000701\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000701","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Long-term follow-up of intracerebroventricular injection of streptozotocin-inducing pain sensitization.
Age is known to be the major risk factor for both pain sensation and sporadic Alzheimer's disease (sAD). Pain management in AD is a critical health condition. However, assessing pain in sAD patients is challenging. The intracerebroventricularly injected streptozotocin (icv-STZ) rat model of sAD has been brought to the fore as a hopefully suitable model that could mimic some features of sAD. However, the exact mechanism by which this agent may induce AD-like pathology is largely unknown. In some studies, analgesic drugs have been suggested as possible prevention of AD and icv-STZ-induced AD-like pathology. Therefore, this study used formalin and tail-flick tests to investigate whether different doses of icv-STZ injections could affect acute and inflammatory pain sensation and edema volume over time. Behavioral responses were observed at four testing time points (1, 2.5, 3.5, and 6 months postinjection). The results indicate that icv-STZ was able to significantly decrease the animals' formalin pain threshold in both a time- and dose-dependent manner. Formalin-induced acute and chronic pain scores of animals treated with streptozotocin 3 mg/kg (STZ3) increased dramatically 2.5 months after injection and persisted thereafter. The augmentation in pain score induced by streptozotocin 1 mg/kg (STZ1) was observed from 3.5 months after STZ injection. However, the effect of streptozotocin 0.5 mg/kg (STZ0.5) was NS until 6 months after injection. However, formalin-induced paw edema occurred with a longer delay and was not detectable in STZ0.5-treated animals. In addition, only STZ3-treated animals significantly reduced the thermal pain threshold of animals 6 months after injection. These observations indicate that icv-STZ can sensitize central and/or peripheral receptors to pain. The effect of STZ is dose- and time-dependent. AD-like pathology induced by icv-STZ could be partially activated via pain processing pathways. Therefore, anti-inflammatory agents could alleviate AD-like symptoms via pain treatments.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.